题目链接

题意 : 用矩阵相乘求斐波那契数的后四位。

思路 :基本上纯矩阵快速幂。

 //
#include <iostream>
#include <cstring>
#include <cstdio> using namespace std; struct Matrix
{
int v[][];
};
int n; Matrix matrix_mul(Matrix a,Matrix b)
{
Matrix c;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
c.v[i][j] = ;
for(int k = ; k < ; k++)
c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j])%;
}
}
return c;
} int matrix_mi()
{
Matrix p,t ;
p.v[][] = p.v[][] = p.v[][] = ;
p.v[][] = ;
t.v[][] = t.v[][] = ;//t是单位向量
t.v[][] = t.v[][] = ;
while(n)
{
if(n&)//奇数
t = matrix_mul(t,p);
n = n>> ;
p = matrix_mul(p,p);
}
return t.v[][] ;
}
int main()
{
while(scanf("%d",&n)!=EOF&&n!=-)
{
if(n == || n == )
{
cout<<n<<endl;
continue;
}
int ans = matrix_mi();
cout<<ans<<endl;
}
return ;
}

POJ 3070 Fibonacci(矩阵快速幂)的更多相关文章

  1. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  2. poj 3070 Fibonacci 矩阵快速幂

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

  3. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  4. POJ 3070 Fibonacci矩阵快速幂 --斐波那契

    题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...

  5. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  6. POJ——3070Fibonacci(矩阵快速幂)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12329   Accepted: 8748 Descri ...

  7. UVA - 10229 Modular Fibonacci 矩阵快速幂

                                 Modular Fibonacci The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 3 ...

  8. POJ 3744 【矩阵快速幂优化 概率DP】

    搞懂了什么是矩阵快速幂优化.... 这道题的重点不是DP. /* 题意: 小明要走某条路,按照个人兴致,向前走一步的概率是p,向前跳两步的概率是1-p,但是地上有地雷,给了地雷的x坐标,(一维),求小 ...

  9. poj3070 Fibonacci 矩阵快速幂

    学了线代之后 终于明白了矩阵的乘法.. 于是 第一道矩阵快速幂.. 实在是太水了... 这差不多是个模板了 #include <cstdlib> #include <cstring& ...

  10. poj 3735 稀疏矩阵矩阵快速幂

    设人数为 $n$,构造 $(n + 1) \times (n + 1)$ 的矩阵 得花生:将改行的最后一列元素 $+ 1$ \begin{gather}\begin{bmatrix}1 & 0 ...

随机推荐

  1. linux 下权限问题

    linux 系统下的文件权限 drwxr-xr-x. 2 weblogic weblogic 4096 Dec 26 2012 console-ext-rwxr-xr-x. 1 weblogic we ...

  2. 【风马一族_Android】Android 前端内容

    Android 前端内容 4.1 View 类概述 4.1.1 关于 View //类型说明 view(视图)指的是用户界面组件的基本构建基块.一个视图占据屏幕上的矩形区域,负责绘图和事件处理.视图是 ...

  3. wordpress忘记密码重置

    一直使用浏览器记录密码的方式登陆wordpress,直到有一天重装系统,而浏览器的记录又没有备份,结果怎么也想不起当初所设定的密码了…… -_-||| 遂google了一番,发现了直接修改数据库重设密 ...

  4. Linux进程间通信方法总结

    ①匿名管道(pipe) 匿名管道(pipe)管道是一种半双工的通信方式,数据只能单向流动.如果要进行双工通信,需要建立两个管道.管道只能在具有亲缘关系的进程间使用,例如父子进程或兄弟进程. ②有名管道 ...

  5. css style与class之间的区别

    问题描述:    网页点击[导出]按钮后,将页面table内容另存成excel文件,却发现无法保存表格样式 分析过程: 1.table表格用class,而不是style.导出时并没有导出class定义 ...

  6. jQuery Mobile 开发中常见的问题

    目录 页面缩放显示问题 页面跳转后样式丢失js失效 跳转时重复调用pageinit方法的解决办法 如何调用loading效果   1页面缩放显示问题 问题描述: 页面似乎被缩小了,屏幕太宽了. 解决办 ...

  7. 用cookie实现localstorage功能

    在项目中需要利用到html5的localstorage.但在利用这个属性的时候却发现无法达到预定目标.经过不断的检查及排除,最后发现原因所在: 项目中使用的浏览器是支持localstorage的,但是 ...

  8. C#中窗体的互相访问

    1.在父窗体中构造子窗体对象时,将父窗体传递过去: 如:FrmSub frm=new FrmSub(this);//this代表父窗体 2.将父窗体中要访问的变量和方法修改为public 3.在子窗体 ...

  9. Spark菜鸟学习营Day1 从Java到RDD编程

    Spark菜鸟学习营Day1 从Java到RDD编程 菜鸟训练营主要的目标是帮助大家从零开始,初步掌握Spark程序的开发. Spark的编程模型是一步一步发展过来的,今天主要带大家走一下这段路,让我 ...

  10. Python数据结构——栈、队列的实现(一)

    1. 栈 栈(Stack)是限制插入和删除操作只能在一个位置进行的表,该位置是表的末端,称为栈的顶(top).栈的基本操作有PUSH(入栈)和POP(出栈).栈又被称为LIFO(后入先出)表. 1.1 ...