BZOJ3550: [ONTAK2010]Vacation
3550: [ONTAK2010]Vacation
Time Limit: 10 Sec Memory Limit: 96 MB
Submit: 91 Solved: 71
[Submit][Status]
Description
有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大。
Input
第一行两个整数N,K。
第二行有3N个整数。
Output
一行一个整数表示答案。
Sample Input
14 21 9 30 11 8 1 20 29 23 17 27 7 8 35
Sample Output
HINT
【数据范围】
N<=200,K<=10。
Source
s=;t=*n+;
for1(i,*n)a[i]=read();
insert(s,,k,);insert(*n+,t,k,);
for1(i,n)insert(,i+,,-a[i]);
for2(i,n+,*n)insert(i-n+,i+,,-a[i]);
for2(i,*n+,*n)insert(i-n+,*n+,,-a[i]);
for1(i,*n+)insert(i,i+,inf,);
需要搞清楚a[i]在哪个等式中第一次出现,在哪个等式中第二次出现,以及正负号各是什么。
b[i]的出现很显然,i为正,i+1为负
然后求最大费用最大流就可以过了。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1000
#define maxm 100000
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,mincost,tot=,s,t,a[maxn],head[maxn],q[maxm],d[maxn],from[*maxm];
bool v[maxn];
struct edge{int from,next,go,v,c;}e[*maxm];
void ins(int x,int y,int z,int w)
{
e[++tot].go=y;e[tot].from=x;e[tot].v=z;e[tot].c=w;e[tot].next=head[x];head[x]=tot;
}
void insert(int x,int y,int z,int w)
{
ins(x,y,z,w);ins(y,x,,-w);
}
bool spfa()
{
for (int i=s;i<=t;i++){v[i]=;d[i]=inf;}
int l=,r=,y;q[]=s;d[s]=;v[]=;
while(l!=r)
{
int x=q[++l];if(l==maxn)l=;v[x]=;
for (int i=head[x];i;i=e[i].next)
if(e[i].v&&d[x]+e[i].c<d[y=e[i].go])
{
d[y]=d[x]+e[i].c;from[y]=i;
if(!v[y]){v[y]=;q[++r]=y;if(r==maxn)r=;}
}
}
return d[t]!=inf;
}
void mcf()
{
while(spfa())
{
int tmp=inf;
for(int i=from[t];i;i=from[e[i].from]) tmp=min(tmp,e[i].v);
mincost+=d[t]*tmp;
for(int i=from[t];i;i=from[e[i].from]){e[i].v-=tmp;e[i^].v+=tmp;}
}
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();k=read();
s=;t=*n+;
for1(i,*n)a[i]=read();
insert(s,,k,);insert(*n+,t,k,);
for1(i,n)insert(,i+,,-a[i]);
for2(i,n+,*n)insert(i-n+,i+,,-a[i]);
for2(i,*n+,*n)insert(i-n+,*n+,,-a[i]);
for1(i,*n+)insert(i,i+,inf,);
mcf();
printf("%d\n",-mincost);
return ;
}
就当我懂了T_T
BZOJ3550: [ONTAK2010]Vacation的更多相关文章
- BZOJ3550 [ONTAK2010]Vacation 【单纯形】
题目链接 BZOJ3550 题解 单纯形裸题 题意不清,每个位置最多选一次 #include<algorithm> #include<iostream> #include< ...
- bzoj3550: [ONTAK2010]Vacation(单纯形法+线性规划)
传送门 直接暴力把线性规划矩阵给打出来然后单纯形求解就行了 简单来说就是每个数记一个\(d_i\)表示选或不选,那么就是最大化\(\sum d_ic_i\),并满足一堆限制条件 然后不要忘记限制每个数 ...
- bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线
学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...
- BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划
BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得 ...
- BZOJ 3550: [ONTAK2010]Vacation [单纯形法]
有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大. 好像都是费用流... 单纯性裸题呀... 注意每个数最多选1次 #include ...
- 【BZOJ1283/3550】序列/[ONTAK2010]Vacation 最大费用流
[BZOJ1283]序列 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和 ...
- BZOJ 3550 ONTAK2010 Vacation 单纯形
题目大意:给定一个长度为3n的区间.要求选一些数,且随意一段长度为n的区间内最多选k个数.求选择数的和的最大值 单纯形直接搞 注意一个数仅仅能被选一次 因此要加上xi<=1这个约束条件 不明确3 ...
- 【Richard 的刷(水)题记录】
大概想了想,还是有个记录比较好. 9/24 网络流一日游: 最大流:bzoj1711[Usaco2007 Open]Dining 拆点 BZOJ 3993 Sdoi2015 星际战争 二分 P.S.这 ...
- 【BZOJ】【3550】【ONTAK2010】Vacation
网络流/费用流 Orz太神犇了这题…… 我一开始想成跟Intervals那题一样了……每个数a[i]相当于覆盖了(a[i]-n,a[i]+n)这个区间……但是这样是错的!!随便就找出反例了……我居然还 ...
随机推荐
- vs怎么创建MVC及理解其含义
怎么创建MVC项目 一·1.点击 文件à新建à项目à模板àVisua C#(选择 .NET Framework 4.0或以上版本) à选择 MVC 3 Web应用程序 或者MVC 4 Web应用程序à ...
- C# DateTime 日期加1天 减一天 加一月 减一月 等方法(转)
//今天 DateTime.Now.Date.ToShortDateString(); //昨天,就是今天的日期减一 DateTime.Now.AddDays(-).ToShortDateString ...
- WCF之实例模型
PerCall. 为每次调用创建新的服务对象. 内存使用量最小,增加整体的吞吐量. 状态不保存,服务实例及时释放. 单例的状态没有办法保存.所以应使用数据库或者文件或者全局变量来保存服务实例的状态.如 ...
- (转)mongoDB 禁用大内存页面 transparent_hugepage=never
最近在学mongoDB,安装倒没什么困难,有yum仓库.不过接入ctl后的一条warning倒挺让人烦心的. 1 2 2015-03-22T09:27:00.222+0800 I CONTROL [ ...
- (转)RabbitMQ消息队列(六):使用主题进行消息分发
在上篇文章RabbitMQ消息队列(五):Routing 消息路由 中,我们实现了一个简单的日志系统.Consumer可以监听不同severity的log.但是,这也是它之所以叫做简单日志系统的原因, ...
- 2015年最新出炉的JavaScript开发框架
前端框架简化了开发过程中,像 Bootstrap 和 Foundation 就是前端框架的佼佼者.在这篇文章了,我们编制了一组新鲜的,实用的,可以帮助您建立高质量的 Web 应用程序的 JavaScr ...
- linux install mpi4py
Downloading The MPI for Python package is available for download at the project website generously h ...
- html5定位并在百度地图上显示
在开发移动端 web 或者webapp时,使用百度地图 API 的过程中,经常需要通过手机定位获取当前位置并在地图上居中显示出来,这就需要用到html5的地理定位功能. navigator.geolo ...
- 使用struct实现面向对象编程的封装
虽然C是面向过程的语言,但是这不代表C不能使用面向对象的思想,本质上说语言只是一种手段而已,一种外在的表现形式,支持面向对象的语言只是通过设计的特定的关键字更好的表现了面向对象编程而已.C中也可以使用 ...
- php 读取文件头判断文件类型的实现代码
php代码实现读取文件头判断文件类型,支持图片.rar.exe等后缀. 例子: <?php $filename = "11.jpg"; //为图片的路径可以用d:/uploa ...