$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \infty. \eex$$

[Papers]NSE, $\p_3u$, Lebesgue space [Penel-Pokorny, AM, 2004]的更多相关文章

  1. [Papers]NSE, $u_3$, Lebesgue space [Jia-Zhou, NARWA, 2014]

    $$\bex u_3\in L^\infty(0,T;L^\frac{10}{3}(\bbR^3)). \eex$$

  2. [Papers]NSE, $u_3$, Lebesgue space [Zhou-Pokorny, Nonlinearity, 2009]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{4}+\frac{1}{2q},\quad \fra ...

  3. [Papers]NSE, $u_3$, Lebesgue space [Cao-Titi, IUMJ, 2008]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{2}{3}+\frac{2}{3q},\quad \fra ...

  4. [Papers]NSE, $u_3$, Lebesgue space [Kukavica-Ziane, Nonlinearity, 2006]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{5}{8},\quad \frac{24}{5}<q ...

  5. [Papers]NSE, $u_3$, Lebesgue space [NNP, QM, 2002; Zhou, JMPA, 2005]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{1}{2},\quad 6< q\leq \inft ...

  6. [Papers]NSE, $\p_3u$, Lebesgue space [Cao, DCDSA, 2010]

    $$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{27}{16}\leq q\le ...

  7. [Papers]NSE, $\p_3u$, Lebesgue space [Kukavica-Ziane, JMP, 2007]

    $$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{9}{4}\leq q\leq ...

  8. [Papers]NSE, $\n u_3$, Lebesgue space, [Pokorny, EJDE, 2003; Zhou, MAA, 2002]

    $$\bex \n u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \i ...

  9. [Papers]MHD, $\p_3\pi$, Lebesgue space [Zhang-Li-Yu, JMAA, 2013]

    $$\bex \p_3\pi\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{3}{2}\leq q\leq 3 ...

随机推荐

  1. APT攻击

    http://netsecurity.51cto.com/art/201211/363040.htm

  2. Eclipse 编译错误 Access restriction:The type *** is not accessible due to restriction on... 解决方案

    报错: Access restriction:The type JPEGCodec is not accessible due to restriction on required library C ...

  3. CF 221div2 A. Lever

    A. Lever 题目:http://codeforces.com/contest/376/problem/A 题意:杠杆原理 比两边的重量 input =^== output balance 9== ...

  4. Java学习笔记之:Java数据类型的转换

    一.介绍 数据类型的转换,分为自动转换和强制转换.自动转换是程序在执行过程中“悄然”进行的转换,不需要用户提前声明,一般是从位数低的类型向位数高的类型转换:强制类型转换则必须在代码中声明,转换顺序不受 ...

  5. Spring与Hibernate整合

    Spring与Struts2整合的目的: 让Spring管理Action Spring整合Hinernate的目的: --管理SessionFactory(单例的),数据源 --声明式事务管理 1.首 ...

  6. windows系统下Python环境的搭建

    1.下载最新的Python版本3.5.0.

  7. C++:运算符重载函数之友元运算符重载

    5.2.2 友元运算符重载函数 运算符重载函数一般采用两种形式定义: 一是定义为它将要操作的类的成员函数(简称运算符重载函数): 二是定义为类的友元函数(简称为友元运算符重载函数). 1.定义友元运算 ...

  8. spring boot 1.4默认使用 hibernate validator

    spring boot 1.4默认使用 hibernate validator 5.2.4 Final实现校验功能.hibernate validator 5.2.4 Final是JSR 349 Be ...

  9. 关于java.lang.NoClassDefFoundError: com/sun/mail/util/LineInputStream解决办法

    吉林的一个项目有个错误找了一天,有段报错是:   java.lang.NoClassDefFoundError: com/sun/mail/util/LineInputStream 1.遇到过两次,第 ...

  10. How to Determine the Version of Oracle XML Publisher for Oracle E-Business Suite 11i and Release 12 (Doc ID 362496.1)

    Modified: 29-Mar-2014 Type: HOWTO In this DocumentGoal   Solution   1. Based upon an output file gen ...