题意:略。

析:多写几个就找到规律了,第1条是2,2条时是7个,3条时是16,4条时是29,。。。。

那么规律就出来了2 * n * n + 1 - n;

也可以递推,第n条折线的两条边都与前n-1条折线的所有边都不平行,因为他们都是相交的;第n条折线的第一条边要与前n-1条折线的2*(n-1)条边都相交,

每与两个边相交就增加一个分割开的部分,所以有2*(n-1)-1个被分割的部分在这里被增加,另外一条第n条折线的边也增加2*(n-1)-1个部分,另外最后第n第折线的两边,

还要向外无限延伸,与它们相交的最后一个前n-1个折线中的边与其分别构成了一个多余的部分,而第n条折线的头部也是一个独立的部分,所 以2*(n-1)-1再+3,

就是比n-1条折线分割成的部分多出的部分数,所以有:a[n]=(2*(n-1)-1)*2+3+a[n-1];

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
const int maxn = 10000 + 5; int main(){
int T, n, a, b; cin >> T; while(T--){
scanf("%d", &n);
printf("%d\n", 2*n*n-n+1);
}
return 0;
}
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
using namespace std ; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const int mod = 1e9 + 7;
const int dr[] = {0, 0, -1, 1};
const int dc[] = {-1, 1, 0, 0};
int n, m;
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL ans[maxn]; void init(){
ans[0] = 1;
for(int i = 1; i <= 10000; ++i)
ans[i] = ans[i-1] + 2LL * (2LL*(i-1)-1LL) + 3;
} LL f(int n){
if(!n) return 1;
return 2LL*(2LL*(n-1)-1LL) + 3 + f(n-1);
} int main(){
//init();
int T; cin >> T;
while(T--) cin >> n, cout << f(n) << endl;
return 0;
}

HDU 2050 折线分割平面 (递推)的更多相关文章

  1. hdu 2050 折线分割平面 (递推)

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  2. hdu 2050 折线分割平面 dp递推 *

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  3. hdu 2050:折线分割平面(水题,递归)

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  4. hdu2050 折线分割平面---递推

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2050 题目大意: 求n条折线分割平面的最大数目 思路: 先看n条直线的时候 一条直线 2个平面 两条 ...

  5. HDU 2050 折线分割平面 (数学)

    题目链接 Problem Description我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目.比如,一条折线可以将平面分成两部分,两条折线最多可 ...

  6. HDU 2050 折线分割平面(转)

    折线分割平面 http://acm.hdu.edu.cn/showproblem.php?pid=2050 Problem Description 我们看到过很多直线分割平面的题目,今天的这个题目稍微 ...

  7. HDU - 2050 - 折线分割平面(数学 + dp)

    题意: 我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目.比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分 思路: 记住结论.. ...

  8. hdu 2050 折线分割平面(递推公式)

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  9. hdu 2050 折线分割平面

    训练递推用题,第一次做这个题,蒙的,而且对了. #include <stdio.h> int main(void) { int c,a; scanf("%d",& ...

随机推荐

  1. uva 10453 - Make Palindrome(dp, 记录路径)

    题目 题意: 给一个字符串 ,判断最少插入多少个字符 使字符串成为回文串, 并输出回文串. 思路:先用dp判断需要个数, 再递归输出路径. #include <iostream> #inc ...

  2. Jqgrid入门-操作表格的数据(二)

    上一篇中,Jqgrid已经可以从服务端获得数据,并显示在Grid表格中了.下面说一下,如何操作表格及其数据.           jqGrid有很多方法函数,用来操作数据或者操作Grid表格本身.jq ...

  3. NSAutoReleasePool

    做iPhone应用开发已经2年多了, 但一些基础的概念性问题只是大致了解, 脑袋中有个模糊的概念. 虽然对平时工作开发没什么影响, 不过时间长了, 心里总是有点虚. 所以从现在开始, 每当我遇到一个模 ...

  4. 极光推送使用实例(二) Android客户端

    上一篇简单介绍了极光推送在Java服务端的实现,如果感兴趣的可以看一下极光推送使用实例(一)JAVA服务端.这篇文章介绍下极光推送在Android客户端的实现. JPush Android SDK 是 ...

  5. Java [Leetcode 319]Bulb Switcher

    题目描述: There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off ...

  6. 图文详解YUV420数据格式

    YUV格式有两大类:planar和packed.对于planar的YUV格式,先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V.对于packed的YUV格式,每个像素点的Y,U ...

  7. 解决IE6下png图片不透明

    ie6着实是非常让人讨厌,显示一张图片,也要带着灰白色的背景色,一张好好的png图片就这么不透明了. 用n多中网上的方式,差点成功的就还有这个了 _background: none; _filter: ...

  8. C# 多线程网络爬虫

    原文 C#制作多线程处理强化版网络爬虫 上次做了一个帮公司妹子做了爬虫,不是很精致,这次公司项目里要用到,于是有做了一番修改,功能添加了网址图片采集,下载,线程处理界面网址图片下载等. 说说思路:首相 ...

  9. 两个数组a[N],b[N],其中A[N]的各个元素值已知,现给b[i]赋值,b[i] = a[0]*a[1]*a[2]…*a[N-1]/a[i];

    转自:http://blog.csdn.net/shandianling/article/details/8785269 问题描述:两个数组a[N],b[N],其中A[N]的各个元素值已知,现给b[i ...

  10. Partitioning by Palindromes

    题意: 给定一个字符串,求能分成最小几个回文串 分析:简单dp dp[i]前i个字符能分成的最小数量 dp[i]=min(dp[i],dp[j-1]+1) (j-i 是回文串) #include &l ...