在加权有向图中求平均权值最小的回路。

一上手没有思路,看到“回路”,第一想法就是找连通分量,可又是加权图,没什么好思路,那就转换题意:由求回路权值->判负环,求最小值->常用二分答案。

二份答案,再利用利用bellman-ford判负环。

注意:

1、double:经常为了确定每个变量的类型,漏掉了某个变量,调半天心都凉了。干脆全变double。

2、没有告诉m的数据范围,要是在比赛中肯定有人问,要是reply是“read carefully”,总不能猜吧,乖乖用vector吧= =

3、原图为有向图,但不一定强连通,所以所有点要先入队才能找到全部的连通分量(就wa在这里)

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define clr(a,m) memset(a,m,sizeof(a))
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std; const int MAXN=;
const int INF =1e8;
const double eps=1e-; struct Edge{
int u,v;
double c;
}; int inq[MAXN],cnt[MAXN];
double d[MAXN];
vector<Edge>edge;
vector<int>G[MAXN]; void init(int n)
{
edge.clear();
rep(i,,n)
G[i].clear();
} void add(int u,int v,double c)
{
edge.push_back((Edge){u,v,c});
int m=edge.size();
G[u].push_back(m-);
} double build(int m)
{
int u,v;
double c;
double up=;
rep(i,,m){
scanf("%d%d%lf",&u,&v,&c);
up=max(up,c);
add(u,v,c);
}
return up;
} bool BF(int st,int n)
{
clr(inq,);
clr(cnt,);
queue<int>q;
rep(i,,n){
if(i==st)d[i]=;
else d[i]=INF;
q.push(i);
}
while(!q.empty())
{
int u=q.front();q.pop();
inq[u]=false;
int sz=G[u].size();
rep(i,,sz-){
Edge e=edge[G[u][i]];
if(d[e.v]>d[u]+e.c){
d[e.v]=d[u]+e.c;
if(!inq[e.v]){
q.push(e.v);
inq[e.v]=true;
if(++cnt[e.v]>n)
return true;
}
}
}
}
return false;
} bool test(int n,int m,double x)
{
rep(i,,m-)
edge[i].c-=x;
bool flog=BF(,n);
rep(i,,m-)
edge[i].c+=x;
return flog;
} int main()
{
int T,n,m;
scanf("%d",&T);
for(int ans=;ans<=T;ans++)
{
scanf("%d%d",&n,&m);
init(n);
double up=build(m); printf("Case #%d: ",ans);
if(!test(n,m,up+))
printf("No cycle found.\n");
else{
double l=,r=up;
while(r-l>eps)
{
double x=l+(r-l)/;
if(test(n,m,x))
r=x;
else
l=x;
}
printf("%.2f\n",l);
}
}
return ;
}

UVA 11090 Going in Cycle!!(二分答案+判负环)的更多相关文章

  1. poj 2049(二分+spfa判负环)

    poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...

  2. poj 3621 二分+spfa判负环

    http://poj.org/problem?id=3621 求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大. 0/1整数划分问题 令在一个环里,点权为v[i], ...

  3. [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  4. LOJ #10084. 「一本通 3.3 练习 1」最小圈(二分+SPFA判负环)

    题意描述: 见原LOJ:https://loj.ac/problem/10084 题解: 假设所求的平均最小值为X,环上各个边的权值分别为A1,A2...Ak,可以得到: X=(A1+A2+A3+.. ...

  5. 【题解】 [HNOI2009] 最小圈 (01分数规划,二分答案,负环)

    题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除 ...

  6. 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)

    layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...

  7. UVA - 11090 - Going in Cycle!!(二分+差分约束系统)

    Problem  UVA - 11090 - Going in Cycle!! Time Limit: 3000 mSec Problem Description You are given a we ...

  8. UVA 11090 - Going in Cycle!!(Bellman-Ford)

    UVA 11090 - Going in Cycle!! option=com_onlinejudge&Itemid=8&page=show_problem&category= ...

  9. UVA11090 Going in Cycle!!(二分判负环)

    UVA11090 Going in Cycle!! 二分答案,用spfa判负环. 注意格式:图不一定连通. 复杂度$O(nmlog(maxw-minw))$ #include<iostream& ...

随机推荐

  1. java连接sqlserver2008报错 java.sql.SQLException: 对象名 '表名' 无效.

    注意:c3p0的数据库配置方式为: <named-config name="sqlsvr"> <property name="driverClass&q ...

  2. MVC3中在同一解决方案的不同项目中实现Area功能

    1.背景      微软在MVC中引入了Area概念,用于复杂项目的分工开发.如一个MVC项目中Controller过多时,就会导致项目中包含大量的Controller+View+Model,无论是查 ...

  3. [转]CentOS 5.5下FTP安装及配置

    一.FTP的安装 1.检测是否安装了FTP : [root@localhost ~]# rpm -q vsftpd vsftpd-2.0.5-16.el5_5.1 否则显示:[root@localho ...

  4. java.lang.IllegalArgumentException: Requested window android.os.BinderProxy@450b2f48 异常处理

    晕死的错误,改了半天也没想到是这样的原因,基础正要呀... 先看一下警告信息: 07-07 08:32:19.540: WARN/WindowManager(74): Failed looking u ...

  5. DevOps 和技术债务偿还自动化

    当企业想要迁移到一个 DevOps 模型时,经常需要偿还高等级的技术债务 说得更明确一点,机构往往陷入「技术债务的恶性循环」中,以至于任何迅速.敏捷的迁移方式都无法使用.这是技术债务中的希腊债务危机水 ...

  6. poj 1797 Heavy Transportation(最短路变种2,连通图的最小边)

    题目 改动见下,请自行画图理解 具体细节也请看下面的代码: 这个花了300多ms #define _CRT_SECURE_NO_WARNINGS #include<string.h> #i ...

  7. linux入门教程(九) 文本编辑工具vim

    前面多次提到过vim这个东西,它是linux中必不可少的一个工具.没有它很多工作都无法完成.早期的Unix都是使用的vi作为系统默认的编辑器的.你也许会有疑问,vi与vim有什么区别?可以这样简单理解 ...

  8. Java传入参数个数不确定可用(Type ... values)

    /** * 可变长的参数. * 有时候,我们传入到方法的参数的个数是不固定的,为了解决这个问题,我们一般采用下面的方法: * 1. 重载,多重载几个方法,尽可能的满足参数的个数.显然这不是什么好办法. ...

  9. MyBatis,动态传入表名,字段名的解决办法

    转载:http://luoyu-ds.iteye.com/blog/1517607 今天做项目,遇到的问题就是需求修改数据表的记录,而且字段名都不是固定的,也就是说是需要通过参数传入的, 本来这也不是 ...

  10. JavaWeb项目开发案例精粹-第3章在线考试系统-007View层

    0.login.jsp <%@ page language="java" import="java.util.*" pageEncoding=" ...