UVA 11090 Going in Cycle!!(二分答案+判负环)
在加权有向图中求平均权值最小的回路。
一上手没有思路,看到“回路”,第一想法就是找连通分量,可又是加权图,没什么好思路,那就转换题意:由求回路权值->判负环,求最小值->常用二分答案。
二份答案,再利用利用bellman-ford判负环。
注意:
1、double:经常为了确定每个变量的类型,漏掉了某个变量,调半天心都凉了。干脆全变double。
2、没有告诉m的数据范围,要是在比赛中肯定有人问,要是reply是“read carefully”,总不能猜吧,乖乖用vector吧= =
3、原图为有向图,但不一定强连通,所以所有点要先入队才能找到全部的连通分量(就wa在这里)
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define clr(a,m) memset(a,m,sizeof(a))
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std; const int MAXN=;
const int INF =1e8;
const double eps=1e-; struct Edge{
int u,v;
double c;
}; int inq[MAXN],cnt[MAXN];
double d[MAXN];
vector<Edge>edge;
vector<int>G[MAXN]; void init(int n)
{
edge.clear();
rep(i,,n)
G[i].clear();
} void add(int u,int v,double c)
{
edge.push_back((Edge){u,v,c});
int m=edge.size();
G[u].push_back(m-);
} double build(int m)
{
int u,v;
double c;
double up=;
rep(i,,m){
scanf("%d%d%lf",&u,&v,&c);
up=max(up,c);
add(u,v,c);
}
return up;
} bool BF(int st,int n)
{
clr(inq,);
clr(cnt,);
queue<int>q;
rep(i,,n){
if(i==st)d[i]=;
else d[i]=INF;
q.push(i);
}
while(!q.empty())
{
int u=q.front();q.pop();
inq[u]=false;
int sz=G[u].size();
rep(i,,sz-){
Edge e=edge[G[u][i]];
if(d[e.v]>d[u]+e.c){
d[e.v]=d[u]+e.c;
if(!inq[e.v]){
q.push(e.v);
inq[e.v]=true;
if(++cnt[e.v]>n)
return true;
}
}
}
}
return false;
} bool test(int n,int m,double x)
{
rep(i,,m-)
edge[i].c-=x;
bool flog=BF(,n);
rep(i,,m-)
edge[i].c+=x;
return flog;
} int main()
{
int T,n,m;
scanf("%d",&T);
for(int ans=;ans<=T;ans++)
{
scanf("%d%d",&n,&m);
init(n);
double up=build(m); printf("Case #%d: ",ans);
if(!test(n,m,up+))
printf("No cycle found.\n");
else{
double l=,r=up;
while(r-l>eps)
{
double x=l+(r-l)/;
if(test(n,m,x))
r=x;
else
l=x;
}
printf("%.2f\n",l);
}
}
return ;
}
UVA 11090 Going in Cycle!!(二分答案+判负环)的更多相关文章
- poj 2049(二分+spfa判负环)
poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...
- poj 3621 二分+spfa判负环
http://poj.org/problem?id=3621 求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大. 0/1整数划分问题 令在一个环里,点权为v[i], ...
- [USACO07DEC]观光奶牛Sightseeing Cows 二分答案+判断负环
题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...
- LOJ #10084. 「一本通 3.3 练习 1」最小圈(二分+SPFA判负环)
题意描述: 见原LOJ:https://loj.ac/problem/10084 题解: 假设所求的平均最小值为X,环上各个边的权值分别为A1,A2...Ak,可以得到: X=(A1+A2+A3+.. ...
- 【题解】 [HNOI2009] 最小圈 (01分数规划,二分答案,负环)
题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除 ...
- 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)
layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...
- UVA - 11090 - Going in Cycle!!(二分+差分约束系统)
Problem UVA - 11090 - Going in Cycle!! Time Limit: 3000 mSec Problem Description You are given a we ...
- UVA 11090 - Going in Cycle!!(Bellman-Ford)
UVA 11090 - Going in Cycle!! option=com_onlinejudge&Itemid=8&page=show_problem&category= ...
- UVA11090 Going in Cycle!!(二分判负环)
UVA11090 Going in Cycle!! 二分答案,用spfa判负环. 注意格式:图不一定连通. 复杂度$O(nmlog(maxw-minw))$ #include<iostream& ...
随机推荐
- 【BZOJ】【3757】苹果树
树分块 orz HZWER http://hzwer.com/5259.html 不知为何我原本写的倍增求LCA给WA了……学习了HZWER的倍增新姿势- 树上分块的转移看vfk博客的讲解吧……(其实 ...
- 【BZOJ】【2208】【JSOI2010】连通数
题解: 1.Tarjan缩点以后对每个连通分量进行深搜,看能到哪些连通分量,能到达的所有连通分量的size之和记为sum.则第i个连通分量对答案的贡献为size[i]*sum(到其他连通分量)+siz ...
- Oracle 一次执行多条语句
在.Net使用多次方法一次执行多条语句都不成功, 百度了许久才找到正确的解决方案. Oracle执行多条语句的时候 不能有物理换行 写法对比: 如下写法是不成功. begin into t_test ...
- uva 991
卡特兰数 最后不输出空行... #include <cstdio> #include <cstdlib> #include <cmath> #include &l ...
- HDU 1301 Jungle Roads (最小生成树,基础题,模版解释)——同 poj 1251 Jungle Roads
双向边,基础题,最小生成树 题目 同题目 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include<stri ...
- [转]剖析ASP.Net MVC Application
http://www.cnblogs.com/errorif/archive/2009/02/13/1389927.html 为了完全了解Asp.net MVC是怎样工作的,我将从零开始创建一个MVC ...
- MVC中SelectList和@Html.DropDownList("MainDuty_UserId","请选择")的运用
Models.Project model = projectdb.dbSet.SingleOrDefault(e => e.Project_ID == id); ViewB ...
- iOS开发中@selector的理解
@selector 是什么? 1一种类型 SEL2代表你要发送的消息(方法), 跟字符串有点像, 也可以互转.: NSSelectorFromString() / NSSelectorFromStri ...
- Oracle - 位图索引的适用条件
位图索引的适用条件 位图索引适合只有几个固定值的列,如性别.婚姻状况.行政区等等,而身份证号这种类型不适合用位图索引. 位图索引适合静态数据,而不适合索引频繁更新的列. 举个例子,有这样一个字段bus ...
- 【转】 wget 命令用法详解
wget是在Linux下开发的开放源代码的软件,作者是Hrvoje Niksic,后来被移植到包括Windows在内的各个平台上.它有以下功能和特点:(1)支持断点下传功能:这一点,也是网络蚂蚁和Fl ...