2-sat。不错的一道题,学到了不少。

需要注意这么几点:

1、题目中描述的是有n对夫妇,其中(n-1)对是来为余下的一对办婚礼的,所以新娘只有一位。

2、2-sat问题是根据必然性建边,比如说A与B二选一,那么当不选A时,必然选B。在本题中,我们所能确定的必然性只有一种:当一对通奸者中的一个人出现在新娘的对面时,另一个必须在新娘的同侧。一开始,我每次建的是两条边,即由新娘指向对面的一人,再从这个人,指向与新娘同侧的另一人(语言描述较困难,但我尽量简明的表达出来)。这是一种假设,因为新娘既可能在左边,又可能在右边。但是这不是必然性:“新娘指向对面的一个人”,这条边不存在必然关系。

解决办法:我们假定新娘就在某一侧。那么是否会影响最终结果呢?不会,因为不管在那一侧,只要有正确方案,转换一下方向,总归是成立的。

3、如何确定新娘就在某一侧?

建边的过程,我们假定了新娘的位置,但是并没有确定的在程序中表现出,新娘就在这一侧。

方法:(1)mark[0]=1;明确的表示出新娘已被标记,但需要注意的是,每次dfs标记的是一条链,或者说是以你选择的点为根的一棵树,所以,只是这样做是不够的,需要单独对mark[0]做一次dfs。

(2)如代码中写的,dfs过程中,若是在 dfs(0) 时失败了,那么就return false;不给 dfs(1) 机会。

注意:准确的说,确定了新娘的位置,即确定了“0w”和“0h”的位置,那么所有包含“0w”或“0h”的关系,所建的边都只能有一条。不过删掉约束条件一样能ac,仔细想来,是solve()中if(i==0)return false;的功劳,因为我只允许dfs(0)成功,所以即使建了另一条边,也不会有机会搜的。

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<vector>
#include<algorithm>
using namespace std; const int MAXN=; int n;
bool mark[MAXN<<];
int S[MAXN<<],c;
vector<int >G[MAXN<<]; void init(int n)
{
for(int i=;i<(n<<);i++)
G[i].clear();
memset(mark,,sizeof(mark));
} void add(int x,int xval,int y,int yval)
{
x=(x<<)+xval;
y=(y<<)+yval;
G[x].push_back(y);
} bool dfs(int x)
{
if(mark[x^]){
return false;
}
if(mark[x]){
return true;
}
S[c++]=x;
mark[x]=true;
for(int i=;i<G[x].size();i++)
{
if(!dfs(G[x][i])){
return false;
}
}
return true;
} bool solve()
{
for(int i=;i<(n<<);i+=)
{
if(!mark[i]&&!mark[i+]){
c=;
if(!dfs(i)){
if(i==) //如果新娘在 0 这一侧这一前提不成立,则 no solusion
return false;
while(c>)
mark[S[--c]]=false;
if(!dfs(i+))
return false;
}
}
}
return true;
} int main()
{
int m,a,b;
char x,y;
while(~scanf("%d%d",&n,&m))
{
if(!n&&!m)
return ; init(n);
for(int i=;i<m;i++) //固定新娘在 0 这一侧
{
scanf("%d%c %d%c",&a,&x,&b,&y);
if(x=='h'&&y=='h'){
add(a,,b,);
add(b,,a,);
}else if(x=='w'&&y=='w'){
add(a,,b,);
add(b,,a,);
}else if(x=='h'&&y=='w'){
add(a,,b,);
add(b,,a,);
}else if(x=='w'&&y=='h'){
add(a,,b,);
add(b,,a,);
}
} if(solve()){
for(int i=;i<n;i++)
{
if(mark[i<<])
printf("%dw",i);
else
printf("%dh",i);
if(i!=n-)
printf(" ");
}
printf("\n");
}else
printf("bad luck\n");
}
return ;
}
/*
附上一组数据,让我发现了第三个问题
10 10
6h 2w
1h 9w
1w 3w
9w 0h
1h 9h
4h 1w
7h 2w
1h 0h
0h 9w
0h 3h
*/

UVA 11294 Wedding(2-sat)的更多相关文章

  1. UVA 11294 - Wedding(Two-Set)

    UVA 11294 - Wedding 题目链接 题意:有n对夫妻,0号是公主.如今有一些通奸关系(男男,女女也是可能的)然后要求人分配在两側.夫妻不能坐同一側.而且公主对面一側不能有两个同奸的人,问 ...

  2. uva 509 RAID!(磁盘数据)

    来自 https://blog.csdn.net/su_cicada/article/details/80085318 习题4-7 RAID技术(RAID!, ACM/ICPC World Final ...

  3. UVA 11168 Airport(凸包+直线方程)

    题意:给你n[1,10000]个点,求出一条直线,让所有的点都在都在直线的一侧并且到直线的距离总和最小,输出最小平均值(最小值除以点数) 题解:根据题意可以知道任意角度画一条直线(所有点都在一边),然 ...

  4. UVA 11624 Fire!(广度优先搜索)

    题目大意:在一个N*M的迷宫内,J代表某人(只有一个),F代表火(可能不只一个),#代表墙,火每分钟会向四周除了墙以外的地方扩散一层,问人能否在没被火烧到 之前逃出迷宫,若能逃出输出最短时间.很明显的 ...

  5. UVA 11478 Halum(差分约束)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 [思路] 差分约束系统. 设结点u上的操作和为sum[u] ...

  6. UVA 12263 Rankings(拓扑排序)

    给出一个n个数的序列1,然后有m个改动(a, b),在序列2中a跟b在序列中的相对顺序改变.求符合题意的序列2. 题中说道如果一个数的位置不确定,则输出‘?' ,仔细想想,这种情况是不会存在的,因为在 ...

  7. uva 10288 Coupons (分数模板)

    https://vjudge.net/problem/UVA-10288 大街上到处在卖彩票,一元钱一张.购买撕开它上面的锡箔,你会看到一个漂亮的图案. 图案有n种,如果你收集到所有n(n≤33)种彩 ...

  8. UVa 104 - Arbitrage(Floyd动态规划)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  9. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

随机推荐

  1. mac 搭建git服务器

      一.简单搭建,不提供复杂的权限管理: 远程建立git用户,并打开ssh服务:见http://www.cnblogs.com/whj198579/archive/2013/04/09/3009350 ...

  2. VIM配置(转载)

    注: 转载于http://www.cnblogs.com/ma6174/ 花了很长时间整理的,感觉用起来很方便,共享一下. 我的vim配置主要有以下优点: 1.按F5可以直接编译并执行C.C++.ja ...

  3. MSAA

    多重采样抗锯齿(MultiSampling Anti-Aliasing,簡稱MSAA)是一种特殊的超级采样抗锯齿(SSAA).MSAA首先来自于OpenGL.具体是MSAA只对Z缓存(Z-Buffer ...

  4. 帝国cms如何调用栏目别名作为分类标题?[!--classname--]标签不能用

    用帝国cms建站安全性和生成速度会比dedecms好些,但ecms有个比较不方便的地方就是后台默认模板栏目那边没有一个seo标题设置的输入框,列表模板用的是[!--pagetitle--]标签,那么分 ...

  5. 对于python的内存管理的好文章

    http://www.cnblogs.com/vamei/p/3232088.html 包含了一个绘制关系图的包

  6. rsync 文件校验及同步原理及rsync server配置

    参考:http://rsync.samba.org/how-rsync-works.html 我们关注的是其发送与接收校验文件的算法,这里附上原文和我老婆(^_^)的翻译: The Sender Th ...

  7. Sublime Text 3 搭建 React.js 开发环境

    sublime有很强的自定义功能,插件库很庞大,针对新语言插件更新很快,配合使用可以快速搭建适配语言的开发环境. 1. babel 支持ES6, React.js, jsx代码高亮,对 JavaScr ...

  8. Project Euler 90:Cube digit pairs 立方体数字对

    Cube digit pairs Each of the six faces on a cube has a different digit (0 to 9) written on it; the s ...

  9. Sina App Engine(SAE)入门教程(7)- Storage使用

    参考阅读 sae storage api 文档 Storage 说明文档 Storage 大文件上传说明 storage是什么? 因为sae禁用了代码环境的本地读写,但是在网站运行的过程中,必定会出现 ...

  10. Executing Raw SQL Queries using Entity Framework

    原文 Executing Raw SQL Queries using Entity Framework While working with Entity Framework developers m ...