题目:

求ax+by=c的一组解,使得abs(x)+abs(y)尽量小,满足前面前提下abs(ax)+abs(by)尽量小


题解:

exgcd之后,分别求出让x尽量小和y尽量小的解,取min即可

 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a,b,c,x,y,u1,u2,v1,v2,g;
int exGcd(int a,int b,int &x,int &y)
{
if (b==) return x=,y=,a;
int r=exGcd(b,a%b,y,x);
y-=(a/b)*x;
return r;
}
int main()
{
while (scanf("%d%d%d",&a,&b,&c),a+b+c>)
{
g=exGcd(a,b,x,y);
a/=g,b/=g,c/=g;
u1=(x%b*c%b+b)%b;
v1=(c-u1*a)/b;
if (v1<) v1=-v1;
v2=(y%a*c%a+a)%a;
u2=(c-v2*b)/a;
if (u2<) u2=-u2;
if (u1+v1>u2+v2 || (u1+v1==u2+v2 && a*u1+b*v1>a*u2+b*u2))
u1=u2,v1=v2;
printf("%d %d\n",u1,v1);
}
return ;
}

POJ 2142 The balance | EXGCD的更多相关文章

  1. POJ.2142 The Balance (拓展欧几里得)

    POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...

  2. POJ 2142 The Balance(exgcd)

    嗯... 题目链接:http://poj.org/problem?id=2142 AC代码: #include<cstdio> #include<iostream> using ...

  3. poj 2142 The Balance

    The Balance http://poj.org/problem?id=2142 Time Limit: 5000MS   Memory Limit: 65536K       Descripti ...

  4. POJ 2142 The Balance (解不定方程,找最小值)

    这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a& ...

  5. POJ 2142 The Balance【扩展欧几里德】

    题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小. 用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当 ...

  6. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...

  7. POJ 2142 - The Balance [ 扩展欧几里得 ]

    题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...

  8. E - The Balance POJ - 2142 (欧几里德)

    题意:有两种砝码m1, m2和一个物体G,m1的个数x1,  m2的个数为x2, 问令x1+x2最小,并且将天平保持平衡 !输出  x1 和 x2 题解:这是欧几里德拓展的一个应用,欧几里德求不定方程 ...

  9. 扩展欧几里得(E - The Balance POJ - 2142 )

    题目链接:https://cn.vjudge.net/contest/276376#problem/E 题目大意:给你n,m,k,n,m代表当前由于无限个质量为n,m的砝码.然后当前有一个秤,你可以通 ...

随机推荐

  1. scrapy--Cookies

    大家好,之前看到的关于cookies的应用,由于有段时间没看,再看的时候花了一些时间,来给大家总结下.本文是根据:"http://www.bubuko.com/infodetail-2233 ...

  2. Nginx安装,目录结构与配置文件详解

    1.Nginx简介 Nginx(发音同 engine x)是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.由俄罗斯的程序设 ...

  3. 正则表达式,regular expression, regex, RE

    正则表达式是用来简洁表达一组字符串的表达式 正则表达式可以用来判断某字符串的特征归属

  4. Android面试收集录7 AsyncTask详解

    1.Android中的线程 在操作系统中,线程是操作系统调度的最小单元,同时线程又是一种受限的系统资源,即线程不可能无限制地产生, 并且 **线程的创建和销毁都会有相应的开销.**当系统中存在大量的线 ...

  5. (C)spring boot读取自定义配置文件时乱码解决办法

    这是入门的第三天了,从简单的hello spring开始,已经慢慢接近web的样子.接下来当然是读取简单的对象属性了. 于是按照网上各位大神教的,简单写了个对象book,如上一篇(B),其他配置不需要 ...

  6. 内存释放free函数的异常问题

    本次在实际应用中遇到一个问题,首先是定义了一个指针,然后这个指针指向某一个地址,但是这个地址不是用malloc分配的.如果后面用free去释放这个指针会产生什么现象. 首先看下指针的声明和使用 uin ...

  7. CentOS-6.3-minimal安装gnome桌面环境(转载)

    最近,想学着搞搞linux,从入门安装开始,先装centos6.3-minimal,发现是windowser最不习惯的命令界面,先升级桌面,教程如下. 1.添加一个普通用户,并设置密码useradd  ...

  8. 程序员必备PC维修法(软件篇)

    学会使用专业软件检测与修复电脑硬件故障问题也是程序员的一种软技能. windows篇 情景:如何获取电脑硬件的真实信息.(如何检验选购回来的硬件是否正品) 自检:使用AIDA64软件检查电脑硬件,能详 ...

  9. QA 、 QC & QM软件测试入门专业名词解释 -- 灌水走起

    灌水正式开始: 说明:我的农田,我灌水 一.QA . QC & QM: 1.QM QM 是quanlity management,中文名称是品质管理 2.QA QA是英文quality ass ...

  10. 【转载】Unity3D研究院之静态自动检查代码缺陷与隐患

    代码缺陷和代码错误的最大区别是,代码缺陷不影响游戏编译,而代码错误编译都不通过.但是代码缺陷会影响游戏发布后产生的一系列BUG..我今天无意间逛外国论坛发现的一个方法,使用了一下感觉挺给力的第一时间分 ...