题目:

求ax+by=c的一组解,使得abs(x)+abs(y)尽量小,满足前面前提下abs(ax)+abs(by)尽量小


题解:

exgcd之后,分别求出让x尽量小和y尽量小的解,取min即可

 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a,b,c,x,y,u1,u2,v1,v2,g;
int exGcd(int a,int b,int &x,int &y)
{
if (b==) return x=,y=,a;
int r=exGcd(b,a%b,y,x);
y-=(a/b)*x;
return r;
}
int main()
{
while (scanf("%d%d%d",&a,&b,&c),a+b+c>)
{
g=exGcd(a,b,x,y);
a/=g,b/=g,c/=g;
u1=(x%b*c%b+b)%b;
v1=(c-u1*a)/b;
if (v1<) v1=-v1;
v2=(y%a*c%a+a)%a;
u2=(c-v2*b)/a;
if (u2<) u2=-u2;
if (u1+v1>u2+v2 || (u1+v1==u2+v2 && a*u1+b*v1>a*u2+b*u2))
u1=u2,v1=v2;
printf("%d %d\n",u1,v1);
}
return ;
}

POJ 2142 The balance | EXGCD的更多相关文章

  1. POJ.2142 The Balance (拓展欧几里得)

    POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...

  2. POJ 2142 The Balance(exgcd)

    嗯... 题目链接:http://poj.org/problem?id=2142 AC代码: #include<cstdio> #include<iostream> using ...

  3. poj 2142 The Balance

    The Balance http://poj.org/problem?id=2142 Time Limit: 5000MS   Memory Limit: 65536K       Descripti ...

  4. POJ 2142 The Balance (解不定方程,找最小值)

    这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a& ...

  5. POJ 2142 The Balance【扩展欧几里德】

    题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小. 用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当 ...

  6. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...

  7. POJ 2142 - The Balance [ 扩展欧几里得 ]

    题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...

  8. E - The Balance POJ - 2142 (欧几里德)

    题意:有两种砝码m1, m2和一个物体G,m1的个数x1,  m2的个数为x2, 问令x1+x2最小,并且将天平保持平衡 !输出  x1 和 x2 题解:这是欧几里德拓展的一个应用,欧几里德求不定方程 ...

  9. 扩展欧几里得(E - The Balance POJ - 2142 )

    题目链接:https://cn.vjudge.net/contest/276376#problem/E 题目大意:给你n,m,k,n,m代表当前由于无限个质量为n,m的砝码.然后当前有一个秤,你可以通 ...

随机推荐

  1. CRC32为例详细解析(菜鸟至老鸟进阶)

    CRC-知识解析 cyclic redundancy check 写在前面的话: 之前在做学校项目的时候用到了CRC 原理,但在网上查找的过程中,发现讲解CRC知识的资源很多,但是对新手比较友好的.讲 ...

  2. 【软件笔记】 ◆笔记·I◆ 各类冷门函数细解

    [软件笔记·I] 各类冷门函数细解 ■题外话■ 总觉得作为一个志向远大的 coder (٩(◕‿◕。)۶),我觉得单单只会做题是不够的所以我开始尝试自己编写软件!初入道的我并不知道C++其实并不太适合 ...

  3. udp发送广播消息

    import socket if __name__ == '__main__': # 创建udpsocket udp_socket = socket.socket(socket.AF_INET, so ...

  4. 控制器方法重复命名导致nginx 504的问题

    由于控制器方法重复命名重启swoole后运行代码导致 504 Gateway Time-out ,查看laravel日志和nginx日志才找原因所在,以后还是要多看错误日志.

  5. Pandas 数值计算和统计基础

    1.(1) # 基本参数:axis.skipna import numpy as np import pandas as pd df = pd.DataFrame({'key1':[4,5,3,np. ...

  6. [Codeforces967C]Stairs and Elevators(二分查找)

    [不稳定的传送门] Sloution 每次试一下最近的2个楼梯或者电梯就行了 Code #include <cstdio> #include <algorithm> #incl ...

  7. Android面试收集录9 IntentService详解

    一. 定义 IntentService是Android里面的一个封装类,继承自四大组件之一的Service. 二.作用 处理异步请求,实现多线程 三. 工作流程 注意:若启动IntentService ...

  8. 剑指Offer - 九度1385 - 重建二叉树

    剑指Offer - 九度1385 - 重建二叉树2013-11-23 23:53 题目描述: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的 ...

  9. USACO Section2.1 Ordered Fractions 解题报告

    frac1解题报告 —— icedream61 博客园(转载请注明出处)---------------------------------------------------------------- ...

  10. 《算法》C++代码 Dijkstra

    单源最短路,复杂度是O(N²),堆优化的是O(NlogN).基本思想是贪心,每次都加入一个当前最近的点,可以证明每次当时最近的点就是当前最短的路径.因此,所有点都加入之后,起点到所有点的最短路径就都求 ...