POJ 2142 The balance | EXGCD
题目:
求ax+by=c的一组解,使得abs(x)+abs(y)尽量小,满足前面前提下abs(ax)+abs(by)尽量小
题解:
exgcd之后,分别求出让x尽量小和y尽量小的解,取min即可
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a,b,c,x,y,u1,u2,v1,v2,g;
int exGcd(int a,int b,int &x,int &y)
{
if (b==) return x=,y=,a;
int r=exGcd(b,a%b,y,x);
y-=(a/b)*x;
return r;
}
int main()
{
while (scanf("%d%d%d",&a,&b,&c),a+b+c>)
{
g=exGcd(a,b,x,y);
a/=g,b/=g,c/=g;
u1=(x%b*c%b+b)%b;
v1=(c-u1*a)/b;
if (v1<) v1=-v1;
v2=(y%a*c%a+a)%a;
u2=(c-v2*b)/a;
if (u2<) u2=-u2;
if (u1+v1>u2+v2 || (u1+v1==u2+v2 && a*u1+b*v1>a*u2+b*u2))
u1=u2,v1=v2;
printf("%d %d\n",u1,v1);
}
return ;
}
POJ 2142 The balance | EXGCD的更多相关文章
- POJ.2142 The Balance (拓展欧几里得)
POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...
- POJ 2142 The Balance(exgcd)
嗯... 题目链接:http://poj.org/problem?id=2142 AC代码: #include<cstdio> #include<iostream> using ...
- poj 2142 The Balance
The Balance http://poj.org/problem?id=2142 Time Limit: 5000MS Memory Limit: 65536K Descripti ...
- POJ 2142 The Balance (解不定方程,找最小值)
这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a& ...
- POJ 2142 The Balance【扩展欧几里德】
题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小. 用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当 ...
- POJ - 2142 The Balance(扩展欧几里得求解不定方程)
d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...
- POJ 2142 - The Balance [ 扩展欧几里得 ]
题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...
- E - The Balance POJ - 2142 (欧几里德)
题意:有两种砝码m1, m2和一个物体G,m1的个数x1, m2的个数为x2, 问令x1+x2最小,并且将天平保持平衡 !输出 x1 和 x2 题解:这是欧几里德拓展的一个应用,欧几里德求不定方程 ...
- 扩展欧几里得(E - The Balance POJ - 2142 )
题目链接:https://cn.vjudge.net/contest/276376#problem/E 题目大意:给你n,m,k,n,m代表当前由于无限个质量为n,m的砝码.然后当前有一个秤,你可以通 ...
随机推荐
- 懒下载软件,一行代码连接wifi^_^
按键盘的windows+R,输入cmd,回车键 设置语句netsh wlan set hostednetwork mode=allow ssid=user key=possword 按回车键 启动语句 ...
- vue本人常用插件汇总(常更新)
1. 移动端UI插件 mint-ui http://mint-ui.github.io/#!/zh-cn 2.vue状态管理vuex,持久化插件:vuex-persist https://github ...
- php中const与static的区别与使用(转)
首先关于const 在php的类内部只可以修饰成员属性,不可以修饰方法,如下: class Test{ const PATH = 'c/';//修饰常量 const function te ...
- Pandas基本命令
关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas as pd 创建测试对象 import ...
- linux下,把屏幕竖起来
xrandr -o left 向左旋转90度 xrandr -o right 向右旋转90度 xrandr -o inverted 上下翻转 xrandr -o normal 回到正常角度
- linux 共享内存
共享内存是最高效的IPC机制,因为它不涉及进程之间的任何数据传输.这种高效带来的问题是,我们必须用其他手段来同步进程对共享内存的访问,否则会产生竞态条件.所以,共享内存通常和其他进程间通信方式一起使用 ...
- poj 2965 枚举+DFS
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 25343 ...
- Android 时间计算工具 通用类TimeUtil
1.整体分析 1.1.源代码如下,可以直接Copy. public class TimeUtil { private static final String TAG = "TimeUtil& ...
- Android的Fragment介绍
前言 fragment是从android3.0开始提出来的,用来支持大屏幕设备的ui设计.通过将activity划分为多个fragment,不仅提高了设计的灵活性,而且可以在程序运行时改变它们的特征, ...
- APP开发手记01(app与web的困惑)
文章链接:http://quke.org/post/app-dev-fragment.html (转载时请注明本文出处及文章链接) 最近在用博客园的wcf服务做博客园的android和ios的app, ...