照搬pytorch官方代码,只是将数据集换成了INRIAPerson数据集中的train和test文件夹。

贴下代码和效果,代码是官方的,就不详细解释了。

# License: BSD
# Author: Sasank Chilamkurthy from __future__ import print_function, division import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy plt.ion() # interactive mode
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
} data_dir = 'person'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated # Get a batch of training data
inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch
out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes])

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time() best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0 for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10) # Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode running_loss = 0.0
running_corrects = 0 # Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device) # zero the parameter gradients
optimizer.zero_grad() # forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels) # backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step() # statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc)) # deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights
model.load_state_dict(best_model_wts)
return model
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure() with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device) outputs = model(inputs)
_, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j]) if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
Epoch 0/24
----------
train Loss: 0.4124 Acc: 0.8477
val Loss: 0.0737 Acc: 0.9744 Epoch 1/24
----------
train Loss: 0.2891 Acc: 0.9023
val Loss: 0.0836 Acc: 0.9703 Epoch 2/24
----------
train Loss: 0.3094 Acc: 0.9050
val Loss: 0.0614 Acc: 0.9771 Epoch 3/24
----------
train Loss: 0.2308 Acc: 0.9279
val Loss: 0.0429 Acc: 0.9865 Epoch 4/24
----------
train Loss: 0.1748 Acc: 0.9498
val Loss: 0.0331 Acc: 0.9906 Epoch 5/24
----------
train Loss: 0.2252 Acc: 0.9301
val Loss: 0.0702 Acc: 0.9906 Epoch 6/24
----------
train Loss: 0.1726 Acc: 0.9531
val Loss: 0.0442 Acc: 0.9852 Epoch 7/24
----------
train Loss: 0.1595 Acc: 0.9536
val Loss: 0.0359 Acc: 0.9906 Epoch 8/24
----------
train Loss: 0.1310 Acc: 0.9651
val Loss: 0.0355 Acc: 0.9892 Epoch 9/24
----------
train Loss: 0.1172 Acc: 0.9689
val Loss: 0.0325 Acc: 0.9906 Epoch 10/24
----------
train Loss: 0.1070 Acc: 0.9733
val Loss: 0.0515 Acc: 0.9838 Epoch 11/24
----------
train Loss: 0.1304 Acc: 0.9683
val Loss: 0.0452 Acc: 0.9892 Epoch 12/24
----------
train Loss: 0.1164 Acc: 0.9656
val Loss: 0.0424 Acc: 0.9892 Epoch 13/24
----------
train Loss: 0.0751 Acc: 0.9809
val Loss: 0.0396 Acc: 0.9906 Epoch 14/24
----------
train Loss: 0.1091 Acc: 0.9749
val Loss: 0.0279 Acc: 0.9946 Epoch 15/24
----------
train Loss: 0.0751 Acc: 0.9842
val Loss: 0.0352 Acc: 0.9906 Epoch 16/24
----------
train Loss: 0.1353 Acc: 0.9705
val Loss: 0.0413 Acc: 0.9879 Epoch 17/24
----------
train Loss: 0.0957 Acc: 0.9787
val Loss: 0.0332 Acc: 0.9906 Epoch 18/24
----------
train Loss: 0.1091 Acc: 0.9689
val Loss: 0.0317 Acc: 0.9906 Epoch 19/24
----------
train Loss: 0.1101 Acc: 0.9700
val Loss: 0.0402 Acc: 0.9879 Epoch 20/24
----------
train Loss: 0.1133 Acc: 0.9754
val Loss: 0.0392 Acc: 0.9892 Epoch 21/24
----------
train Loss: 0.0970 Acc: 0.9776
val Loss: 0.0424 Acc: 0.9865 Epoch 22/24
----------
train Loss: 0.0865 Acc: 0.9814
val Loss: 0.0348 Acc: 0.9919 Epoch 23/24
----------
train Loss: 0.1319 Acc: 0.9656
val Loss: 0.0341 Acc: 0.9892 Epoch 24/24
----------
train Loss: 0.0997 Acc: 0.9771
val Loss: 0.0328 Acc: 0.9906 Training complete in 9m 32s
Best val Acc: 0.994602
In [30]: visualize_model(model_ft)
visualize_model(model_ft)

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2) model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
Epoch 0/24
----------
train Loss: 0.3994 Acc: 0.8466
val Loss: 0.2137 Acc: 0.9109 Epoch 1/24
----------
train Loss: 0.2783 Acc: 0.8963
val Loss: 0.0649 Acc: 0.9744 Epoch 2/24
----------
train Loss: 0.2976 Acc: 0.8870
val Loss: 0.0577 Acc: 0.9811 Epoch 3/24
----------
train Loss: 0.2873 Acc: 0.9039
val Loss: 0.0477 Acc: 0.9825 Epoch 4/24
----------
train Loss: 0.3214 Acc: 0.8843
val Loss: 0.0499 Acc: 0.9798 Epoch 5/24
----------
train Loss: 0.3244 Acc: 0.8772
val Loss: 0.0483 Acc: 0.9798 Epoch 6/24
----------
train Loss: 0.2855 Acc: 0.8985
val Loss: 0.0446 Acc: 0.9825 Epoch 7/24
----------
train Loss: 0.2425 Acc: 0.9121
val Loss: 0.0460 Acc: 0.9798 Epoch 8/24
----------
train Loss: 0.2070 Acc: 0.9219
val Loss: 0.0390 Acc: 0.9879 Epoch 9/24
----------
train Loss: 0.2189 Acc: 0.9127
val Loss: 0.0408 Acc: 0.9825 Epoch 10/24
----------
train Loss: 0.2243 Acc: 0.9148
val Loss: 0.0577 Acc: 0.9825 Epoch 11/24
----------
train Loss: 0.2042 Acc: 0.9236
val Loss: 0.0519 Acc: 0.9852 Epoch 12/24
----------
train Loss: 0.2425 Acc: 0.9083
val Loss: 0.0440 Acc: 0.9838 Epoch 13/24
----------
train Loss: 0.2127 Acc: 0.9198
val Loss: 0.0454 Acc: 0.9865 Epoch 14/24
----------
train Loss: 0.2479 Acc: 0.9045
val Loss: 0.0551 Acc: 0.9771 Epoch 15/24
----------
train Loss: 0.2562 Acc: 0.8990
val Loss: 0.0491 Acc: 0.9852 Epoch 16/24
----------
train Loss: 0.2104 Acc: 0.9143
val Loss: 0.0448 Acc: 0.9852 Epoch 17/24
----------
train Loss: 0.2606 Acc: 0.8974
val Loss: 0.0480 Acc: 0.9798 Epoch 18/24
----------
train Loss: 0.2474 Acc: 0.9067
val Loss: 0.0639 Acc: 0.9798 Epoch 19/24
----------
train Loss: 0.2159 Acc: 0.9176
val Loss: 0.0495 Acc: 0.9852 Epoch 20/24
----------
train Loss: 0.2107 Acc: 0.9170
val Loss: 0.0482 Acc: 0.9838 Epoch 21/24
----------
train Loss: 0.2128 Acc: 0.9121
val Loss: 0.0522 Acc: 0.9838 Epoch 22/24
----------
train Loss: 0.2263 Acc: 0.9176
val Loss: 0.0459 Acc: 0.9852 Epoch 23/24
----------
train Loss: 0.1907 Acc: 0.9329
val Loss: 0.0460 Acc: 0.9906 Epoch 24/24
----------
train Loss: 0.2302 Acc: 0.9181
val Loss: 0.0425 Acc: 0.9879 Training complete in 4m 31s
Best val Acc: 0.990553
In [33]: visualize_model(model_conv)
visualize_model(model_conv)

plt.ioff()
plt.show()

微调和特征提取两种方法的效果都很棒

pytorch 检测图片中是否有人的更多相关文章

  1. opencv 检测图片中圆形物体(解决乱线问题)

    2018-03-0418:03:12 整体代码如下: def detect_circle_demo (image): # 降噪处理 dst = cv.pyrMeanShiftFiltering(ima ...

  2. zbar+opencv检测图片中的二维码或条形码

    zbar本身自带检测二维码条形码功能,这里使用opencv只是做一些简单的读取图片,灰度图片以及显示条形码和二维码时用到一些绘制 // barcode-qrcodescanner.cpp: 定义控制台 ...

  3. thinkphp 检测上传的图片中是否含有木马脚本

    1.检测原理 要想检测图片中是否含有木马脚本,首先从制作原理来分析这种木马程序.这种木马程序是十六进制编码写的,图片的十六进制代码中主要包含<% ( ) %>.<? ( ) ?> ...

  4. [Xcode 实际操作]七、文件与数据-(20)CoreML机器学习框架:检测和识别图片中的物体

    目录:[Swift]Xcode实际操作 本文将演示机器学习框架的使用,实现对图片中物体的检测和识别. 首先访问苹果开发者网站关于机器学习的网址: https://developer.apple.com ...

  5. 打造一个自动检测页面是否存在XSS的小插件

    前言: 还记得刚玩Web安全时,就想着要是能有一个自动挖掘XSS漏洞的软件就好了.然后我发现了Safe3.JSky.AWVS.Netsparker等等,但是误报太多,而且特别占内存.后来发现了fidd ...

  6. 基于HOG特征的Adaboost行人检测

    原地址:http://blog.csdn.net/van_ruin/article/details/9166591 .方向梯度直方图(Histogramof Oriented Gradient, HO ...

  7. pytorch查看CUDA支持情况,只需要三行代码,另附Cuda runtime error (48) : no kernel image is available for execution处理办法

    import torch import torchvision print(torch.cuda.is_available()) 上面的命令只是检测CUDA是否安装正确并能被Pytorch检测到,并没 ...

  8. 第三节,目标检测---R-CNN网络系列

    1.目标检测 检测图片中所有物体的 类别标签 位置(最小外接矩形/Bounding box) 区域卷积神经网络R-CNN 模块进化史 2.区域卷积神经网络R-CNN Region proposals+ ...

  9. 【转载】opencv实现人脸检测

    全文转载自CSDN的博客(不知道怎么将CSDN的博客转到博客园,应该没这功能吧,所以直接复制全文了),转载地址如下 http://blog.csdn.net/lsq2902101015/article ...

随机推荐

  1. 【WebRTC】简介

    WebRTC 名称源自网页实时通信(英语:Web Real-Time Communication)的缩写,是一个支持网页浏览器进行实时语音对话或视频对话的API.它于2011年6月1日开源并在Goog ...

  2. elasticsearch2.x ik插件

    先来一个标准分词(standard),配置如下: curl -XPUT localhost:/local -d '{ "settings" : { "analysis&q ...

  3. UITextField的文本框部分文本以*的方式来显示

    #import "AppDelegate.h" @interface AppDelegate ()<UITextFieldDelegate>// 添加代理协议 @end ...

  4. java过滤器 Fliter

    定义:过滤器是一个服务器端组件,他可以截取用户端请求信息与响应信息,并对信息进行过滤 例:当进入csdn要进行文章编辑时,检测用户是否登录,若未登录,跳转到登录界面. 过滤器操作方法: init() ...

  5. ZROI2018普转提day2t2

    传送门 分析 我们发现2R+C实际就相当于R行C列的子集的个数.因此我们可以将所有集合的子集个数转换为每个集合属于的集合的个数.所以我们可以求出: 这个式子的意义为对于选i行j列的情况的所有方案乘上i ...

  6. 100078D Domestic Networks

    传送门 题目大意 有两种染料,给定它们的单价和数量,每染色一米需耗费一个单位的染料,一条边只能用一种燃料,给你一张图,要求你将其中的一些边染色使得在满足图联通的情况下花费最小并输出方案. 分析 首先, ...

  7. Luogu 3822 [NOI2017]整数

    看懂了的大佬的题解.(这个id太巨了,找不到他的blog) 考虑直接暴力算进位均摊复杂度是对的,证明戳这里. 但是题目要求我们支持一个减操作,这就相当于返回之前操作前的结果,这对于这种均摊的复杂度的东 ...

  8. Linux问题FAQ1

    1.使用vi编辑器时候,按方向键会产生A,B,C之类的 解决办法:ubuntu server 8.04, vim版本为 7.1.138,客户端使用pietty.vim 在插入模式下, 方向键被转为A ...

  9. Entity Framework Code-First(17):Database Initialization Strategy

    Database Initialization Strategies in Code-First: You already created a database after running your ...

  10. 安装visual_Paradigm,时序图的应用

    此安装包已经上传到sunny的百度网盘. 删除,即,右击别的地方,然后,选择delete即可. 拖箭头,拖到某个实体上,再松开,会自动连线. 很好的一款画图工具.