POJ1041 John's trip
John's trip
|
Language:Default
John's trip
Description Little Johnny has got a new car. He decided to drive around the town to visit his friends. Johnny wanted to visit all his friends, but there was many of them. In each street he had one friend. He started thinking how to make his trip as short as possible. Very soon he realized that the best way to do it was to travel through each street of town only once. Naturally, he wanted to finish his trip at the same place he started, at his parents' house.
The streets in Johnny's town were named by integer numbers from 1 to n, n < 1995. The junctions were independently named by integer numbers from 1 to m, m <= 44. No junction connects more than 44 streets. All junctions in the town had different numbers. Each street was connecting exactly two junctions. No two streets in the town had the same number. He immediately started to plan his round trip. If there was more than one such round trip, he would have chosen the one which, when written down as a sequence of street numbers is lexicographically the smallest. But Johnny was not able to find even one such round trip. Help Johnny and write a program which finds the desired shortest round trip. If the round trip does not exist the program should write a message. Assume that Johnny lives at the junction ending the street appears first in the input with smaller number. All streets in the town are two way. There exists a way from each street to another street in the town. The streets in the town are very narrow and there is no possibility to turn back the car once he is in the street Input Input file consists of several blocks. Each block describes one town. Each line in the block contains three integers x; y; z, where x > 0 and y > 0 are the numbers of junctions which are connected by the street number z. The end of the block is marked by the line containing x = y = 0. At the end of the input file there is an empty block, x = y = 0.
Output Output one line of each block contains the sequence of street numbers (single members of the sequence are separated by space) describing Johnny's round trip. If the round trip cannot be found the corresponding output block contains the message "Round trip does not exist."
Sample Input 1 2 1 Sample Output 1 2 3 5 4 6 Source |
||||||||||
John有很多朋友住在不同的街,John想去访问每位朋友,同时希望走的路最少。因为道路很窄,John在一条路上不能往回走。John希望从家里出发,拜访完所有的朋友后回到自己的家,且总的路程最短。John意识到如果可以每条道路都只走一次然后返回起点应该是最短的路径。写一个程序帮助John找到这样的路径。给出的每条街连接两个路口,最多有1995条街,最多44个路口。街编号由1到n, 路口分别编号1到m.
题解
就是判欧拉图找欧拉回路,递归改成迭代(这题不必要)。
1995年的题读入方式非常古怪。
#include<iostream>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
co int N=4e3;
int n,m;
int head[N],ver[N],edge[N],next[N],tot;
int deg[N],stack[N],ans[N],top,t;
bool vis[N];
il void add(int x,int y,int z){
ver[++tot]=y,edge[tot]=z,next[tot]=head[x],head[x]=tot;
}
void euler(){
stack[++top]=2,vis[2]=vis[3]=1;
while(top){
int e=stack[top],x=ver[e],i=head[x];
while(i&&vis[i]) i=next[i];
if(i){
stack[++top]=i;
head[x]=next[i];
vis[i]=vis[i^1]=1;
}
else ans[++t]=edge[stack[top--]];
}
}
int main(){
int x,y,z;
while(read(x)|read(y)){
tot=1,t=0,top=0;
memset(deg,0,sizeof deg);
memset(head,0,sizeof head);
memset(vis,0,sizeof vis);
do{
read(z);
add(x,y,z),add(y,x,z);
++deg[x],++deg[y];
}while(read(x)|read(y));
bool flag=0;
for(int i=1;i<=50;++i)
if(deg[i]&1) {flag=1;break;}
if(flag){
puts("Round trip does not exist.");
continue;
}
euler();
for(int i=t;i>1;--i) printf("%d ",ans[i]);
printf("%d\n",ans[1]);
}
return 0;
}
POJ1041 John's trip的更多相关文章
- POJ1041 John's trip 【字典序输出欧拉回路】
题目链接:http://poj.org/problem?id=1041 题目大意:给出一个连通图,判断是否存在欧拉回路,若存在输出一条字典序最小的路径. 我的想法: 1.一开始我是用结构体记录边的起点 ...
- poj1041 John's trip——字典序欧拉回路
题目:http://poj.org/problem?id=1041 求字典序欧拉回路: 首先,如果图是欧拉图,就一定存在欧拉回路,直接 dfs 即可,不用 return 判断什么的,否则TLE... ...
- UVA302 John's trip(欧拉回路)
UVA302 John's trip 欧拉回路 attention: 如果有多组解,按字典序输出. 起点为每组数据所给的第一条边的编号较小的路口 每次输出完额外换一行 保证连通性 每次输入数据结束后, ...
- Java实现John's trip(约翰的小汽车)
1 问题描述 John's trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8998 Accepted: 3018 Sp ...
- 【poj1041】 John's trip
http://poj.org/problem?id=1041 (题目链接) 题意 给出一张无向图,求字典序最小欧拉回路. Solution 这鬼畜的输入是什么心态啊mdzz,这里用vector储存边, ...
- John's trip(POJ1041+欧拉回路+打印路径)
题目链接:http://poj.org/problem?id=1041 题目: 题意:给你n条街道,m个路口,每次输入以0 0结束,给你的u v t分别表示路口u和v由t这条街道连接,要输出从起点出发 ...
- poj 1041 John's trip 欧拉回路
题目链接 求给出的图是否存在欧拉回路并输出路径, 从1这个点开始, 输出时按边的升序输出. 将每个点的边排序一下就可以. #include <iostream> #include < ...
- POJ 1041 John's trip 无向图的【欧拉回路】路径输出
欧拉回路第一题TVT 本题的一个小技巧在于: [建立一个存放点与边关系的邻接矩阵] 1.先判断是否存在欧拉路径 无向图: 欧拉回路:连通 + 所有定点的度为偶数 欧拉路径:连通 + 除源点和终点外都为 ...
- John's trip POJ - 1041(这题数据有点水)
题意: 其实还是一个欧拉回路,但要按字典序走路: 解析: 我真是蠢啊emm... map[i][j]表示由顶点i经街道j会到达的顶点编号 然后枚举j就好了 用栈储存.. 虽然我不是这样写的 #incl ...
随机推荐
- Linux中的关机
我是用普通用户登录,在终端下输入shutdown命令,结果显示 command not found.这就奇怪了,难道我的linux不支持这个命令?man了一下shutdown,大篇幅的说明告诉我,我的 ...
- spring;maven;github;ssm;分层;timestamp;mvn;
[说明]本来还想今天可以基本搭建一个合适的ssm环境呢,结果发现,,太特么复杂了,网上的例子有好多,看了好多,下面的评论或多或少都有说自己运行产生问题的,搞的我也不敢好好下载运行 [说明]没办法,将目 ...
- jqcloud 标签云效果
官网地址: http://mistic100.github.io/jQCloud/index.htmlgithub 地址: https://github.com/lucaong/jQCloud使用 & ...
- linux c编程:信号(三) sigprocmask和sigpending函数
信号源为目标进程产生了一个信号,然后由内核来决定是否要将该信号传递给目标进程.从信号产生到传递给目标进程的流程图如下图所示: 进程可以阻塞信号的传递.当信号源为目标进程产生了一个信号之后,内核会执行依 ...
- python 安装anaconda, numpy, pandas, matplotlib 等
如果没安装anaconda,则这样安装这些库: pip install numpy pip install pandas pip install matplotlib sudo apt-get ins ...
- sin6_addr打印:string to sockaddr_in6 and sockaddr_in6 to string
函式原型: #include <arpa/inet.h> const char *inet_ntop(int af, const void *src, char *dst, socklen ...
- Spark0.9.0机器学习包MLlib-Optimization代码阅读
基于Spark的一个生态产品--MLlib,实现了经典的机器学算法,源码分8个文件夹,classification文件夹下面包含NB.LR.SVM的实现,clustering文件夹下面包 ...
- DHTMLTree、Dtree和Ztree的学习使用
一.DHTMLTree是树菜单,允许我们快速开发界面优美,基于Ajax的javascript库.她允许在线编辑,拖拽,三种状态(全选.不选.半选),复选框等模式.同时在加载大数据量的时候,仍然可以保持 ...
- #!/usr/bin/python和#!/usr/bin/env 的区别(转)
#!/usr/bin/python和#!/usr/bin/env 的区别 #!/usr/bin/python 通常在一个.py文件开头都会有这个语句 它只在Linux系统下生效,意思是当作为可执行 ...
- Yii2发送短信验证码完全解决方案
概述 在做项目的时候,需要用到短信发送验证码功能.不能不说Yii2的牛逼,很容易就搞定了.下面我整理一下具体功能和流程,分享给大家. 主要功能 通过Yii2 rules验证手机号 通过js验证是否为手 ...