ACM学习历程—HDU5476 Explore Track of Point(平面几何)(2015上海网赛09题)
Problem Description
In Geometry, the problem of track is very interesting. Because in some cases, the track of point may be beautiful curve. For example, in polar Coordinate system,ρ=cos3θ is like rose, ρ=1−sinθ is a Cardioid, and so on. Today, there is a simple problem about it which you need to solve.
Give you a triangle ΔABC and
AB = AC. M is the midpoint of BC. Point P is in ΔABC and makes min{∠MPB+∠APC,∠MPC+∠APB} maximum. The track of P is Γ. Would
you mind calculating the length of Γ?
Given the coordinate of A, B, C, please output the length of Γ.
Input
There are T (1≤T≤104) test cases. For each case, one line
includes six integers the coordinate of A, B, C in order. It is guaranteed that
AB = AC and three points are not collinear. All coordinates do not exceed 104 by absolute value.
Output
For each case, first please output "Case
#k: ", k is the number of test case. See sample output for more detail.
Then, please output the length of Γ with
exactly 4 digits after the decimal point.
Sample Input
1
0 1 -1 0 1 0
Sample Output
Case #1: 3.2214
题目稍微转换一下就变成求∠MPB+∠APC=∠MPC+∠APB=180的点p的轨迹了。
这最后结论是一道平面几何题,高中数竞虽然搞过平面几何,不过基本全部忘光了,定理也只记得一个梅涅劳斯定理了。。。虽然当时就很弱。。
高中数竞时小烈平几就很强@hqwhqwhq,果然赛后题解交代了轨迹寻找的过程。。
http://blog.csdn.net/u014610830/article/details/48753415
虽然找的过程没怎么看懂,不过证明过程基本看懂了。
如果能猜出轨迹的话题目也就解决了,剩下就是怎么证明这个轨迹满足条件了。
首先三角形的高AM是满足条件的,基本是没问题的。
其次B和C点在极限情况下发现也是满足条件的,由于对称性,基本上剩余轨迹就是过B和C的一种图形。。。
运气好的话猜到它是个圆就能解决。。。
盗一张图:

结论是剩余的图是AB过B的垂线与AC过C的垂线交于点M,以M为圆心,BM为半径的圆弧。
接下来证明:
对于圆弧上某一点P,AP延长交圆于点D,
目测的话,∠BPM = ∠CPD。结论就是这个,接下来就是证明这个。
由于B、P、C、D四点共圆,根据托勒密定理:
CP*BD+BP*CD
= BC*DP
由根据割线定理:
AB*AB =
AP*AD
于是可得,三角形APB相似于三角形ABD
于是BP/BD
= AB/AD
同理得:CP/CD
= AC/AD
又AB=AC
于是BP/BD
= CP/CD
即BP*CD
= CP*BD
联合上面的托勒密得2BP*CD = 2CP*BD = BC*DP = 2BM*DP
提取BP*CD
= BM*DP
即BP/BM
= DP/CD
又∠MBP = ∠CDP(同弧所对圆周角相等)
于是三角形MBP相似于三角形CDP
于是结论得证。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; const double PI = acos(-); inline double dis(double xA, double yA, double xB, double yB)
{
double ans = (xA-xB)*(xA-xB) + (yA-yB)*(yA-yB);
return sqrt(ans);
} void work()
{
double xA, yA, xB, yB, xC, yC;
double a, h, d, ans, v, r;
scanf("%lf%lf%lf%lf%lf%lf", &xA, &yA, &xB, &yB, &xC, &yC);
d = dis(xB, yB, xC, yC)/;
h = dis(xA, yA, xB, yB);
a = asin(d/h);
v = PI-*a;
r = h*tan(a);
ans = sqrt(h*h-d*d)+v*r;
printf("%.4lf\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
printf("Case #%d: ", times);
work();
}
return ;
}
ACM学习历程—HDU5476 Explore Track of Point(平面几何)(2015上海网赛09题)的更多相关文章
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)
---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...
- ACM学习历程—HDU5478 Can you find it(数论)(2015上海网赛11题)
Problem Description Given a prime number C(1≤C≤2×105), and three integers k1, b1, k2 (1≤k1,k2,b1≤109 ...
- ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)
Problem Description One day, a useless calculator was being built by Kuros. Let's assume that number ...
- ACM学习历程—HDU 5025 Saving Tang Monk(广州赛区网赛)(bfs)
Problem Description <Journey to the West>(also <Monkey>) is one of the Four Great Classi ...
- hdu 5476 Explore Track of Point(2015上海网络赛)
题目链接:hdu 5476 今天和队友们搞出3道水题后就一直卡在这儿了,唉,真惨啊……看着被一名一名地挤出晋级名次,确实很不好受,这道恶心的几何题被我们3个搞了3.4个小时,我想到一半时发现样例输出是 ...
- ACM学习历程—HDU 5459 Jesus Is Here(递推)(2015沈阳网赛1010题)
Sample Input 9 5 6 7 8 113 1205 199312 199401 201314 Sample Output Case #1: 5 Case #2: 16 Case #3: 8 ...
- ACM学习历程—HDU 5451 Best Solver(Fibonacci数列 && 快速幂)(2015沈阳网赛1002题)
Problem Description The so-called best problem solver can easily solve this problem, with his/her ch ...
- ACM学习历程—HDU 5443 The Water Problem(RMQ)(2015长春网赛1007题)
Problem Description In Land waterless, water is a very limited resource. People always fight for the ...
随机推荐
- iOS基础动画的KeyPath取值
一 .基础动画 1.基础动画的属性详解 注:Core Animation的动画执行过程都是在后台操作的,不会阻塞主线程. 属性 解读 Autoreverses 设定这个属性为 YES 时,在它到达目的 ...
- TRansportation ANalysis and SIMulation System
https://www.fhwa.dot.gov/planning/tmip/transims/background.cfm?from=groupmessage
- C++, Java和C#的编译、链接过程解析
总是感觉java是解释性语言,转载下一篇感觉写的容易理解的文章 转自 http://www.cnblogs.com/rush/p/3155665.html 1.1.1 摘要 我们知道计算机不能直接理解 ...
- 什么是GIL锁以及作用
全局解释锁,每次只能一个线程获得cpu的使用权:为了线程安全,也就是为了解决多线程之间的数据完整性和状态同步而加的锁,因为我们知道线程之间的数据是共享的.
- IO多路复用的作用?并列举实现机制以及区别?
I/O多路复用是用于提升效率,单个进程可以同时监听多个网络连接IO. 举例:通过一种机制,可以监视多个文件描述符,一旦描述符就绪(读就绪和写就绪),能通知程序进行相应的读写操作,I/O多路复用避免阻塞 ...
- READ_TEXT
[转自http://lz357502668.blog.163.com/blog/static/1649674320109119101907/]这里,定义ITAB内表来存储长文本,并放到内表ITAB_E ...
- JVM性能优化, Part 1 ―― JVM简介
JVM性能优化这些列文章共分为5章,是ImportNew上面翻译自Javaworld: 第1章:JVM技术概览 第2章:编译器 第3章:垃圾回收 第4章:并发垃圾回收 第5章:可伸缩性 众所周知,Ja ...
- Python字典的入门案例
查看python版本: [root@localhost ~]# python -V Python 2.7.5 1.基本的字典操作 案例1:简单电话本实现 [root@localhost ~]# vim ...
- 查询某个字段为null并且某个字段不为null的数据
查询代码为null且ggid不为null的公司名 select name_of_invested_company from dwtz WHERE code is NULL and ggid is no ...
- LeetCode:算法特辑——二分搜索
LeetCode:算法特辑——二分搜索 算法模板——基础 int L =0; int R =arr.length; while(L<R) { int M = (R-L)/2+L; if(arr[ ...