[luogu3379]最近公共祖先(树上倍增求LCA)
题意:求最近公共祖先。
解题关键:三种方法,1、st表 2、倍增法 3、tarjan
此次使用倍增模板(最好采用第一种,第二种纯粹是习惯)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
int n,m,root,cnt,u,v,head[],dep[],fa[][];
struct edge{
int nxt;
int to;
}e[];
void add_edge(int u,int v){//单向
e[cnt].to=v;
e[cnt].nxt=head[u];
head[u]=cnt++;
}
void dfs(int u){
for(int i=;(<<i)<=dep[u];i++){
fa[u][i]=fa[fa[u][i-]][i-];
}
for(int i=head[u];~i;i=e[i].nxt){
int v=e[i].to;
if(v==fa[u][]) continue;
fa[v][]=u;
dep[v]=dep[u]+;
dfs(v);
}
}
int lca(int u,int v){
if(dep[u]<dep[v]) swap(u,v);
int d=dep[u]-dep[v];
for(int i=;(<<i)<=d;i++) if(d&(<<i)) u=fa[u][i];//转化到两节点深度相同,类似于快速幂的思想
if(u==v) return u;
for(int i=;i>=;i--){
if(fa[u][i]!=fa[v][i]){
u=fa[u][i];
v=fa[v][i];
}
}
return fa[u][];
}
int main(){
memset(head,-,sizeof head);
scanf("%d%d%d",&n,&m,&root);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
dfs(root);
while(m--){
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return ;
}
2、熟悉的树dp方式
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
int n,m,root,cnt,u,v,head[],dep[],par[][];
struct edge{
int nxt;
int to;
}e[];
void add_edge(int u,int v){//单向
e[cnt].to=v;
e[cnt].nxt=head[u];
head[u]=cnt++;
}
void dfs(int u,int fa){
for(int i=;(<<i)<=dep[u];i++){
par[u][i]=par[par[u][i-]][i-];
}
for(int i=head[u];~i;i=e[i].nxt){
int v=e[i].to;
if(v==fa) continue;
par[v][]=u;
dep[v]=dep[u]+;
dfs(v,u);
}
}
int lca(int u,int v){
if(dep[u]<dep[v]) swap(u,v);
int d=dep[u]-dep[v];
for(int i=;(<<i)<=d;i++) if(d&(<<i)) u=par[u][i];//转化到两节点深度相同,类似于快速幂的思想
if(u==v) return u;
for(int i=;i>=;i--){
if(par[u][i]!=par[v][i]){
u=par[u][i];
v=par[v][i];
}
}
return par[u][];
}
int main(){
memset(head,-,sizeof head);
scanf("%d%d%d",&n,&m,&root);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
dfs(root,-);
while(m--){
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return ;
}
[luogu3379]最近公共祖先(树上倍增求LCA)的更多相关文章
- 树上倍增求LCA(最近公共祖先)
前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...
- [算法]树上倍增求LCA
LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...
- [学习笔记] 树上倍增求LCA
倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...
- 树上倍增求LCA及例题
先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你 ...
- 树上倍增求LCA详解
LCA(least common ancestors)最近公共祖先 指的就是对于一棵有根树,若结点z既是x的祖先,也是y的祖先(不要告诉我你不知道什么是祖先),那么z就是结点x和y的最近公共祖先. 定 ...
- Codeforces 609E (Kruskal求最小生成树+树上倍增求LCA)
题面 传送门 题目大意: 给定一个无向连通带权图G,对于每条边(u,v,w)" role="presentation" style="position: rel ...
- CF 519E(树上倍增求lca)
传送门:A and B and Lecture Rooms 题意:给定一棵树,每次询问到达点u,v距离相等的点有多少个. 分析:按情况考虑: 1.abs(deep[u]-deep[v])%2==1时, ...
- 树上倍增求LCA
大概思想就是,节点$i$的第$2^{j}$个父节点是他第$2^{j-1}$个父亲的第$2^{j-1}$个父亲 然后可以$O(nlogn)$时间内解决…… 没了? //fa[i][j]表示i的第2^j个 ...
- 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))
倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...
随机推荐
- [ZOJ2587]Unique Attack
vjudge sol 最小割判定唯一性. 只要做完一个任意最小割后,判断一下是不是所有点都要么和\(S\)相连,要么和\(T\)相连. 只要两边各一次\(dfs\)就行了. code #include ...
- Real-Time Rendering (2) - 变换和矩阵(Transforms and Matrics)
http://blog.csdn.net/silangquan/article/details/9970673 提要 在图形的计算中,比如旋转.缩放.平移.投影等操作,矩阵都扮演着极其重要的角色,它是 ...
- win8.1系统相关
win8.1系统相关 信息时代,系统更新速度非常快,十一月初,同事在网上花5元买了一个win8.1系统激活码,之后两周,我电脑由于系统故障,准备重装系统,借助他的系统,但无法激活,借用他购买的账号也不 ...
- Xcode工具特性
1.注释 #pragma mark 注释说明#pragma mark - 分类/分组注释说明 2.自定义代码块. 3.多文本编辑框 View>>Assistant Editor
- JavaScript,Dom,jQuery
JavaScript JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScript 语言的规则编写相应代码,浏览器可以解释出相应的处理. 注 ...
- python第三十二天-----算法
算法(Algorithm):一个计算过程,解决问题的方法时间复杂度:用来评估算法运行效率的一个东西ps:在日常使用中,请使用sort(),because no zuo no die! 1.冒泡排序:指 ...
- oralce 记一次 External Procedure initial connection 处理
1 环境 oracle 11.2.0.4 RAC(2 nodes),centos 6.8,实体机 2 问题 线上环境执行一条sql sql> select ST_AsText(ST_Geomet ...
- JCTF 2014(Reverse)
小菜一碟: 点击下载附件 下载的附件没有后缀,用c32打开看看 是apk文件,用Smali2JavaUI打开 程序把输入框的字符串反转,然后进行MD5加密,最后进行base64编码,与NzU2ZDJm ...
- 带坑的几道PHP面试题
第二题 代码如下: $i='11'; printf("%d\n",printf("%d",printf("%d",$i))); 输出结果是多 ...
- vi,sed,tr,awk技巧
将文件中的换行替换为逗号 使用sed: sed -e :a -e N -e '$!ba' -e 's/\n/,/g' filename 使用tr: cat filename | tr '\n' ',' ...