Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17694   Accepted: 12315

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

Source

 
#include <iostream>
#include <cstring>
using namespace std;
const int MAX = 2;
const int mod = 1e4; struct mat{
int f[MAX][MAX];
mat operator * (const mat x){ //重载矩阵的乘法
mat rt;
for(int i = 0; i < MAX; i++){
for(int j = 0; j < MAX; j++){
int ans = 0;
for(int m = 0; m < MAX; m++){
ans += (this->f[i][m] * x.f[m][j]) % mod;
ans %= mod;
}
rt.f[i][j] = ans;
}
}
return rt;
}
}; mat quike(mat base, int n){ //与普通快速幂相似,只是用于存结果的其实值不同,这里用的是rt单位矩阵,类似乘法中设的1
mat rt;
memset(rt.f, 0, sizeof(rt.f));
for(int i = 0; i < MAX; i++)
rt.f[i][i] = 1;
while(n){
if(n & 1)
rt = rt * base;
base = base * base;
n >>= 1;
}
return rt;
} int main(){
int n;
mat base;
for(int i = 0; i < MAX; i++){
for(int j = 0; j < MAX; j++)
base.f[i][j] = 1;
}
base.f[1][1] = 0;
while(cin >> n && n != -1){
mat ans = quike(base, n);
cout << ans.f[0][1] << endl;
}
return 0;
}

  

25-Fibonacci(矩阵快速幂)的更多相关文章

  1. UVA - 10229 Modular Fibonacci 矩阵快速幂

                                 Modular Fibonacci The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 3 ...

  2. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  3. poj 3070 Fibonacci 矩阵快速幂

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

  4. HDU 1588 Gauss Fibonacci(矩阵快速幂)

    Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) ...

  5. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  6. poj3070 Fibonacci 矩阵快速幂

    学了线代之后 终于明白了矩阵的乘法.. 于是 第一道矩阵快速幂.. 实在是太水了... 这差不多是个模板了 #include <cstdlib> #include <cstring& ...

  7. $loj$10222 佳佳的$Fibonacci$ 矩阵快速幂

    正解:矩阵快速幂 解题报告: 我永远喜欢loj! 一看到这个就应该能想到矩阵快速幂? 然后就考虑转移式,发现好像直接想不好想,,,主要的问题在于这个*$i$,就很不好搞$QAQ$ 其实不难想到,$\s ...

  8. POJ 3070 Fibonacci矩阵快速幂 --斐波那契

    题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...

  9. POJ3070:Fibonacci(矩阵快速幂模板题)

    http://poj.org/problem?id=3070 #include <iostream> #include <string.h> #include <stdl ...

  10. hdu 3306 Another kind of Fibonacci 矩阵快速幂

    参考了某大佬的 我们可以根据(s[n-2], a[n-1]^2, a[n-1]*a[n-2], a[n-2]^2) * A = (s[n-1], a[n]^2, a[n]*a[n-1], a[n-1] ...

随机推荐

  1. ImageSwitcher的简单使用

    测试代码: activity_main.xml: <?xml version="1.0" encoding="utf-8"?> <Linear ...

  2. 前端 jQuery副本

    jQuery介绍 jQuery是一个轻量级的.兼容多浏览器的JavaScript库. jQuery使用户能够更方便地处理HTML Document.Events.实现动画效果.方便地进行Ajax交互, ...

  3. Ajax做无刷新分页

    1.主页面代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www ...

  4. Codeforces Round #279 (Div. 2)B. Queue(构造法,数组下标的巧用)

    这道题不错,思维上不难想到规律,但是如何写出优雅的代码比较考功力. 首先第一个人的序号可以确定,那么接下来所有奇数位的序号就可以一个连一个的确定了.然后a[i].first==0时的a[i].seco ...

  5. MySQL学习之一数据库简介

    1.什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,长期储存在计算机内.有组织的.可共享的数据集合. 数据库中的数据指的是以一定的数据模型组织.描述和储存在一起. ...

  6. Gym - 100502G Outing (强连通缩点+树形依赖背包)

    题目链接 问题:有n个人,最多选k个,如果选了某个人就必须选他指定的另一个人,问最多能选多少个人. 将每个人所指定的人向他连一条单向边,则每一个点都有唯一的前驱,形成的图是个基环树森林,在同一个强连通 ...

  7. UVA - 1602 Lattice Animals (暴力+同构判定)

    题目链接 题意:求能放进w*h的网格中的不同的n连通块个数(通过平移/旋转/翻转后相同的算同一种),1<=n<=10,1<=w,h<=n. 刘汝佳的题真是一道比一道让人自闭.. ...

  8. windows10环境下运行Debug

    1. 什么是Debug? Debug是DOS.Windows都提供的实模式(8086方式)程序的调试工具. 使用它,可以查看CPU各种寄存器中的内容.内存的情况和在机器码级别跟踪程序的运行. 2. 常 ...

  9. Laravel 传递数据到视图

    // 使用传统的方法 $view = view('greeting')->with('name', 'Victoria'); // 使用魔术方法 $view = view('greeting') ...

  10. 在CentOS上安装PowerShell

    微软刚刚开源了PowerShell,目前在Linux和MacOS上都能安装.具体的链接如下: https://github.com/PowerShell/PowerShell 本文将介绍如何在Cent ...