kaggle Titanic
# coding: utf-8 # In[19]: # 0.78468 # In[20]: import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from sklearn import preprocessing # In[21]: train_path = r'C:\Users\cbattle\Desktop\train.csv' # r'/home/adminn/桌面/train.csv'
test_path = r'C:\Users\cbattle\Desktop\test.csv' # r'/home/adminn/桌面/test.csv'
out_path = r'C:\Users\cbattle\Desktop\out.csv' # r'/home/adminn/桌面/out.csv' train = pd.read_csv(train_path)
test = pd.read_csv(test_path) print('train:',train.shape)
print('test:',test.shape)
# train.info()
# test.info()
# print(train.head()) # 属性列
# print([col for col in train])
# print([col for col in test]) # 策略
# ['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']
# drop onehot drop 0/1 num num num drop num 0/1 用S补空,onehot # In[22]: X = train.drop(['Survived','PassengerId','Name'], axis=1)
y = train['Survived']
Xtest = test.drop(['PassengerId','Name'], axis=1)
# print('X:',X.shape)
# print('y:',y.shape)
# print('Xtest:',Xtest.shape) # In[23]: key = [col for col in X if X[col].dtype != 'object' # numberic ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
or col == 'Sex'
or col == 'Embarked'
or col == 'Cabin'
]
X = X[key]
Xtest = Xtest[key]
# print(key) def showNullNum(a,b):
print(a.isnull().sum())
print()
print(b.isnull().sum())
print('------------------------------------') showNullNum(X,Xtest) # Xtest['Fare'][Xtest['Fare'].isnull()] = Xtest['Fare'].median() # replace nan with median
# X = X.dropna(axis=0) # drop X and y in the same row #-------------------------------------------------------------------------------
# Pclass Ticket class
# 1 = 1st, 2 = 2nd, 3 = 3rd onehot
# for i in X['Pclass'].unique():
# X['Pclass_'+str(i)] = (X['Pclass']==i).astype(int)
# Xtest['Pclass_'+str(i)] = (Xtest['Pclass']==i).astype(int) # X = X.drop(['Pclass'],axis=1)
# Xtest = Xtest.drop(['Pclass'],axis=1) #-------------------------------------------------------------------------------
# Sex
X['Sex'] = X['Sex'].apply(lambda i:1 if i=='female' else 0)
Xtest['Sex'] = Xtest['Sex'].apply(lambda i:1 if i=='female' else 0) #-------------------------------------------------------------------------------
# Embarked # 1 label encoding
X['Embarked'][X['Embarked'].isnull()] = 'S'
X['Embarked'] = X['Embarked'].map({'S':0,'C':1,'Q':2}).astype(int)
Xtest['Embarked'] = Xtest['Embarked'].map({'S':0,'C':1,'Q':2}).astype(int)
# or use sklearn.preprocessing.LabelEncoder # print(X.head())
# print(Xtest.head()) # X['Embarked'][X['Embarked'].isnull()] = 'S'
# from sklearn import preprocessing
# le = preprocessing.LabelEncoder()
# X['Embarked'] = le.fit_transform(X['Embarked'])
# Xtest['Embarked'] = le.transform(Xtest['Embarked']) # print(X.head())
# print(Xtest.head()) # 2 onehot
# for i in X['Embarked'].unique():
# print(i, 'sum:', sum(X['Embarked']==i)) # X['Embarked'][X['Embarked'].isnull()] = 'S' # most_frequent
# for i in X['Embarked'].unique():
# X['Embarked_type_'+i] = (X['Embarked']==i).astype(int)
# Xtest['Embarked_type_'+i] = (Xtest['Embarked']==i).astype(int) # X = X.drop(['Embarked'],axis=1)
# Xtest = Xtest.drop(['Embarked'],axis=1)
# print(X.head(10)) #-------------------------------------------------------------------------------
# Cabin
# has a cabin or not
# print(X.head(5))
Xtest['Cabin'] = Xtest['Cabin'].apply(lambda i:1 if isinstance(i,str) else 0)
X['Cabin'] = X['Cabin'].apply(lambda i:1 if isinstance(i,str) else 0)
# print(X.head(5)) #-------------------------------------------------------------------------------
# age and fare
# use median to replace nan
from sklearn.preprocessing import Imputer
ip = Imputer(strategy='median')
X = ip.fit_transform(X)
Xtest = ip.transform(Xtest)
print(np.isnan(X).sum(),np.isnan(Xtest).sum()) # In[24]: from xgboost import XGBClassifier
xgb = XGBClassifier()
xgb.fit(X,y)
ans = xgb.predict(Xtest) # from sklearn.tree import DecisionTreeClassifier
# from sklearn.ensemble import ExtraTreesClassifier
# from sklearn.svm import LinearSVC # In[25]: out = pd.DataFrame({'PassengerId':test['PassengerId'],'Survived':ans})
out.to_csv(out_path,index = False)
print('ok') # In[26]: from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(['a','b','c'])
ans = le.transform(['a','a','c'])
print(ans)
kaggle Titanic的更多相关文章
- kaggle& titanic代码
这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...
- kaggle Titanic心得
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...
- Kaggle:Titanic: Machine Learning from Disaster
一直想着抓取股票的变化,偶然的机会在看股票数据抓取的博客看到了kaggle,然后看了看里面的题,感觉挺新颖的,就试了试. 题目如图:给了一个train.csv,现在预测test.csv里面的Passa ...
- Kaggle Titanic补充篇
1.关于年龄Age 除了利用平均数来填充,还可以利用正态分布得到一些随机数来填充,首先得到已知年龄的平均数mean和方差std,然后生成[ mean-std, mean+std ]之间的随机数,然后 ...
- Kaggle Titanic solution 纯规则学习
其实就是把train.csv拿出来看了看,找了找规律,调了调参数而已. 找到如下规律: 1.男的容易死,女的容易活 2.一等舱活,三等舱死 3.老人死,小孩活 4.兄弟姐妹多者死 5.票价高的活 6. ...
- 逻辑回归应用之Kaggle泰坦尼克之灾(转)
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas ...
- Kaggle 泰坦尼克
入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据 ...
- Survival on the Titanic (泰坦尼克号生存预测)
>> Score 最近用随机森林玩了 Kaggle 的泰坦尼克号项目,顺便记录一下. Kaggle - Titanic: Machine Learning from Disaster On ...
- 机器学习案例学习【每周一例】之 Titanic: Machine Learning from Disaster
下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模 ...
随机推荐
- Java 利用Gson将json字符串转换为List<Map<String, String>>
json字符串类似于: [ { "userPhone": "123", "userNo": "123-2", " ...
- 基于JQ的简单左右轮播图
// 轮播图 主要实现思想: a.第一层div,设置overflow为hidden. b.里面是一个ul,每个li里面有个img或者为每个li设置背景图片也可以. c.li设置为左浮动,排成一行,还有 ...
- CAS环境搭建-证书方式(https连接)
一.教程前言 1 教程目的:从头到尾细细道来单点登录服务器及客户端应用的每个步骤 2 单点登录(SSO):请看<CAS简介> 3 本教程使用的SSO服务器是Yelu大学研发的CAS(Cen ...
- JavaScript创建对象的几种重要模式
一.工厂模式 1. 代码示例 function person(name, age) { var p = new object(); p.name = name; p.age = age; p.sayN ...
- C# 获取计算机的硬件信息
/// <summary> /// 获得CPU编号 /// </summary> /// <returns></returns> public stri ...
- Windows命令查看文件的MD5/SHA1/SHA256
certutil -hashfile "D:\Tools\Microsoft\SqlServer\2016\ct_sql_server_2016_enterprise_x64_dvd_869 ...
- 2015 浙江省赛 H - May Day Holiday
H - May Day Holiday As a university advocating self-learning and work-rest balance, Marjar Universit ...
- [python] itertools库学习
最近做 cyber-dojo上的题,好几道都要用到排列组合.一开始我还老老实实自己写算法.后来一想,不对呀!python有那么多的库,为啥不用呢? 于是搜了下,发现这个:itertools 使用 he ...
- handlebars中的partial
高级玩家:partial 比较推崇使用分页来实现组件化.分页跟helper一样需要先注册.在hbs模块中可以批量注册,比较简单. hbs.registerPartials(__dirname + '/ ...
- VMware安装操作系统(Operating System not found一个错误原因)
因为指定的IOS文件是多种操作系统的组合,如Win7(32位和64位完全版),那么安装的时候选择一个操作系统类型和ios文件的类型就匹配不上,所以出现这种错误.