kaggle Titanic
# coding: utf-8 # In[19]: # 0.78468 # In[20]: import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
from sklearn import preprocessing # In[21]: train_path = r'C:\Users\cbattle\Desktop\train.csv' # r'/home/adminn/桌面/train.csv'
test_path = r'C:\Users\cbattle\Desktop\test.csv' # r'/home/adminn/桌面/test.csv'
out_path = r'C:\Users\cbattle\Desktop\out.csv' # r'/home/adminn/桌面/out.csv' train = pd.read_csv(train_path)
test = pd.read_csv(test_path) print('train:',train.shape)
print('test:',test.shape)
# train.info()
# test.info()
# print(train.head()) # 属性列
# print([col for col in train])
# print([col for col in test]) # 策略
# ['PassengerId', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']
# drop onehot drop 0/1 num num num drop num 0/1 用S补空,onehot # In[22]: X = train.drop(['Survived','PassengerId','Name'], axis=1)
y = train['Survived']
Xtest = test.drop(['PassengerId','Name'], axis=1)
# print('X:',X.shape)
# print('y:',y.shape)
# print('Xtest:',Xtest.shape) # In[23]: key = [col for col in X if X[col].dtype != 'object' # numberic ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
or col == 'Sex'
or col == 'Embarked'
or col == 'Cabin'
]
X = X[key]
Xtest = Xtest[key]
# print(key) def showNullNum(a,b):
print(a.isnull().sum())
print()
print(b.isnull().sum())
print('------------------------------------') showNullNum(X,Xtest) # Xtest['Fare'][Xtest['Fare'].isnull()] = Xtest['Fare'].median() # replace nan with median
# X = X.dropna(axis=0) # drop X and y in the same row #-------------------------------------------------------------------------------
# Pclass Ticket class
# 1 = 1st, 2 = 2nd, 3 = 3rd onehot
# for i in X['Pclass'].unique():
# X['Pclass_'+str(i)] = (X['Pclass']==i).astype(int)
# Xtest['Pclass_'+str(i)] = (Xtest['Pclass']==i).astype(int) # X = X.drop(['Pclass'],axis=1)
# Xtest = Xtest.drop(['Pclass'],axis=1) #-------------------------------------------------------------------------------
# Sex
X['Sex'] = X['Sex'].apply(lambda i:1 if i=='female' else 0)
Xtest['Sex'] = Xtest['Sex'].apply(lambda i:1 if i=='female' else 0) #-------------------------------------------------------------------------------
# Embarked # 1 label encoding
X['Embarked'][X['Embarked'].isnull()] = 'S'
X['Embarked'] = X['Embarked'].map({'S':0,'C':1,'Q':2}).astype(int)
Xtest['Embarked'] = Xtest['Embarked'].map({'S':0,'C':1,'Q':2}).astype(int)
# or use sklearn.preprocessing.LabelEncoder # print(X.head())
# print(Xtest.head()) # X['Embarked'][X['Embarked'].isnull()] = 'S'
# from sklearn import preprocessing
# le = preprocessing.LabelEncoder()
# X['Embarked'] = le.fit_transform(X['Embarked'])
# Xtest['Embarked'] = le.transform(Xtest['Embarked']) # print(X.head())
# print(Xtest.head()) # 2 onehot
# for i in X['Embarked'].unique():
# print(i, 'sum:', sum(X['Embarked']==i)) # X['Embarked'][X['Embarked'].isnull()] = 'S' # most_frequent
# for i in X['Embarked'].unique():
# X['Embarked_type_'+i] = (X['Embarked']==i).astype(int)
# Xtest['Embarked_type_'+i] = (Xtest['Embarked']==i).astype(int) # X = X.drop(['Embarked'],axis=1)
# Xtest = Xtest.drop(['Embarked'],axis=1)
# print(X.head(10)) #-------------------------------------------------------------------------------
# Cabin
# has a cabin or not
# print(X.head(5))
Xtest['Cabin'] = Xtest['Cabin'].apply(lambda i:1 if isinstance(i,str) else 0)
X['Cabin'] = X['Cabin'].apply(lambda i:1 if isinstance(i,str) else 0)
# print(X.head(5)) #-------------------------------------------------------------------------------
# age and fare
# use median to replace nan
from sklearn.preprocessing import Imputer
ip = Imputer(strategy='median')
X = ip.fit_transform(X)
Xtest = ip.transform(Xtest)
print(np.isnan(X).sum(),np.isnan(Xtest).sum()) # In[24]: from xgboost import XGBClassifier
xgb = XGBClassifier()
xgb.fit(X,y)
ans = xgb.predict(Xtest) # from sklearn.tree import DecisionTreeClassifier
# from sklearn.ensemble import ExtraTreesClassifier
# from sklearn.svm import LinearSVC # In[25]: out = pd.DataFrame({'PassengerId':test['PassengerId'],'Survived':ans})
out.to_csv(out_path,index = False)
print('ok') # In[26]: from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(['a','b','c'])
ans = le.transform(['a','a','c'])
print(ans)
kaggle Titanic的更多相关文章
- kaggle& titanic代码
这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...
- kaggle Titanic心得
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接 ...
- Kaggle:Titanic: Machine Learning from Disaster
一直想着抓取股票的变化,偶然的机会在看股票数据抓取的博客看到了kaggle,然后看了看里面的题,感觉挺新颖的,就试了试. 题目如图:给了一个train.csv,现在预测test.csv里面的Passa ...
- Kaggle Titanic补充篇
1.关于年龄Age 除了利用平均数来填充,还可以利用正态分布得到一些随机数来填充,首先得到已知年龄的平均数mean和方差std,然后生成[ mean-std, mean+std ]之间的随机数,然后 ...
- Kaggle Titanic solution 纯规则学习
其实就是把train.csv拿出来看了看,找了找规律,调了调参数而已. 找到如下规律: 1.男的容易死,女的容易活 2.一等舱活,三等舱死 3.老人死,小孩活 4.兄弟姐妹多者死 5.票价高的活 6. ...
- 逻辑回归应用之Kaggle泰坦尼克之灾(转)
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas ...
- Kaggle 泰坦尼克
入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据 ...
- Survival on the Titanic (泰坦尼克号生存预测)
>> Score 最近用随机森林玩了 Kaggle 的泰坦尼克号项目,顺便记录一下. Kaggle - Titanic: Machine Learning from Disaster On ...
- 机器学习案例学习【每周一例】之 Titanic: Machine Learning from Disaster
下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模 ...
随机推荐
- Redis底层探秘(二):链表和跳跃表
链表简介 链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地跳转链表的长度. 作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为Redis使用C语言并没有内 ...
- linux开发核心理解
目录 授权 致谢 序言 更新纪录 导读 如何写作科技文档 I. 气候 1. GUI? CLI? 2. UNIX 缩写风格 3. 版本号的迷雾 4. Vim 还是 Emacs 5. DocBoo ...
- bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...
- TreeView的性能问题
最近在帮同事调试一个类似资源管理器的wpf界面,左边TreeView去遍历大目录时UI卡死,刚开始我以为是在UI线程中调用系统API遍历目录的原因,就改为后台遍历,但是没有效果. 根本原因: Tree ...
- 把ASM下的HDD VM转换成ARM下Managed Disk的SSD VM
在ASM下,要把HDD的VM转换成SSD的VM步骤非常复杂.需要手工把Disk从普通存储账户复制到高级存储账户.再通过这个Disk创建VM. 目前在有了ASM到ARM的迁移工具,以及Managed D ...
- 学习SQL Server从在Linux上安装开始
微软已经发布了SQL Server on Linux,目前支持Redhat和Ubuntu两种发行版. 下面我们来安装体验一下. 1. 获得YUM源: YUM的repo文件地址: https://pac ...
- Extjs5.0 学习之路【结构篇】
Extjs5.0在原有的MVC模式下增加了一个MVVM Extjs5.0项目文件执行顺序. 新增特性一 bind---data
- 【转】 Pro Android学习笔记(八六):了解Package(5):使用lib
目录(?)[-] 在项目中使用lib 源代码 了解一些机制 文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件.转载须注明出处:http://blog.csdn.net/flowin ...
- Git命令之创建版本
安装 安装好Git后,将会在桌面生成 这样一个图标 运行后将会是类似控制台程序的黑色窗口,其中mingw64(参考百度百科).这样的话就可以在输入命令 例如 :git 见到下图有详细的用法表示成功否则 ...
- 将本地代码上传至github
注册github账号 https://github.com/ 安装git工具 https://git-for-windows.github.io 1.在github中创建一个项目 2.填写相应信息,点 ...