Hanoi双塔问题

时间限制: 1 Sec  内存限制: 128 MB
提交: 10  解决: 4
[提交][状态][讨论版][命题人:外部导入]

题目描述

给定A,B,C三根足够长的细柱,在A柱上放有2n个中间有空的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形)。现要将 这些国盘移到C柱上,在移动过程中可放在B柱上暂存。要求:

(1)每次只能移动一个圆盘;

(2) A、B、C三根细柱上的圆盘都要保持上小下大的顺序;

任务:设An为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出An。

输入

输入文件hanoi.in为一个正整数n,表示在A柱上放有2n个圆盘。

输出

输出文件hanoi.out仅一行,包含一个正整数,为完成上述任务所需的最少移动次数An。

样例输入

1

样例输出

2

提示

对于50%的数据, 1<=n<=25

对于100% 数据, 1<=n<=200

设法建立An与An-1的递推关系式。

题解

通过手推的方式可以发现转移方程f[i]=2*f[i-1]+2,由于n<=200,所以要用高精

#include <iostream>
#include <cstdio>
using namespace std;
int n,c,a[],i,j;
int main()
{
cin>>n;
a[]=;
for(i=;i<=n;i++)
{
c=;
for(j=;j<=;j++)
{
a[j]=a[j]*+c;
if(j==)
a[j]+=;
c=a[j]/;
a[j]%=;
}
}
i=;
while(i>&&!a[i])
i--;
cout<<a[i];
while(--i)
printf("%04d",a[i]);
cout<<endl;
return ;
}

Hanoi双塔问题(递推)的更多相关文章

  1. POJ1958 Strange Towers of Hanoi [递推]

    题目传送门 Strange Towers of Hanoi Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3117   Ac ...

  2. noip普及组2007 Hanoi双塔问题

    Hanoi双塔问题 描述 给定A,B,C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的.现要将这些圆盘移到C柱上,在移动 ...

  3. 洛谷 P1096 Hanoi双塔问题

    P1096 Hanoi双塔问题 题目描述 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情 ...

  4. 【Java】递归递推的应用

    利用阶乘公式来计算组合式: 程序设计思想: 根据公式来计算组合数的大小,从键盘输入n,k的值,设计一个计算阶乘的大小,如果输入的数a为1或0,则直接return 1,否则运用递归,计算a-1的阶乘,直 ...

  5. 洛谷——P1096 Hanoi双塔问题

    https://www.luogu.org/problem/show?pid=1096 题目描述 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个 ...

  6. 【NOIP2007】Hanoi双塔问题

    题目描述 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形). 现要将这些圆盘移到C柱上 ...

  7. 「学习笔记」递推 & 递归

    引入 假设我们想计算 \(f(x) = x!\).除了简单的 for 循环,我们也可以使用递归. 递归是什么意思呢?我们可以把 \(f(x)\) 用 \(f(x - 1)\) 表示,即 \(f(x) ...

  8. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  9. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

随机推荐

  1. ASP.NET5 MVC6 利用Middleware 创建可访问HttpContext 的业务类工厂。(代替HttpContext.Current)

    我们的目标是在后台业务处理类中,能够很容易的取得用户信息或者其它HTTP请求相关的信息. 所以,首先我们需要一个存储这些信息的类: public class RequestData { public ...

  2. maven deploy 代码

    Run As --> Run Configurations ---> Maven Build --->New _Configuration(双击Maven Build可生成) --& ...

  3. php执行shell不阻塞方法

    大家都知道php执行系统命令的方法有: system() 输出并返回最后一行shell结果. exec() 不输出结果,返回最后一行shell结果,所有结果可以保存到一个返回的数组里面. passth ...

  4. linux与windows 通过SecureCRT进行文件传输方式

    linux与windows 通过SecureCRT进行文件传输方式 方式一:lrzsz是一款在Linux里可代替ftp上传和下载的程序.(小文件推荐,以4G为界限) # rz -bash: rz: c ...

  5. Struts2的Action中访问servletAPI方式

    struts2的数据存放中心为ActionContext,其是每次请求来时都会创建一个ActionContext,访问结束销毁,其绑定在ThreadLocal上,由于每次访问web容器都会为每次请求创 ...

  6. nginx流量全copy记录

    参考:http://tyrion.iteye.com/blog/2311987 准备两台服务器: 0.0.0.1 0.0.0.2 在 0.0.0.1上 . 下载 wget https://github ...

  7. JavaWeb -- http-equiv=refresh跳转的时候出现Session 丢失, 解决办法。。

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  8. Don't add unneeded context不要加不需要的文本

  9. matplotlib画子图时设置总标题

    matplotlib subplots绘图时 设置总标题 :fig.suptitle(name)

  10. CSS3中的变形功能

    一.变形主要值得是利用transform功能来实现文字或图片的旋转,缩放,倾斜,移动这四种处理. 1.旋转-----transform:rotate(xxdeg);( IE9以上,safari 3.1 ...