After an uphill battle, General Li won a great victory. Now the head of state decide to reward him with honor and treasures for his great exploit.

One of these treasures is a necklace made up of 26 different kinds
of gemstones, and the length of the necklace is n. (That is to say: n
gemstones are stringed together to constitute this necklace, and each of
these gemstones belongs to only one of the 26 kinds.)

In accordance with the classical view, a necklace is valuable if
and only if it is a palindrome - the necklace looks the same in either
direction. However, the necklace we mentioned above may not a palindrome
at the beginning. So the head of state decide to cut the necklace into
two part, and then give both of them to General Li.

All gemstones of the same kind has the same value (may be positive
or negative because of their quality - some kinds are beautiful while
some others may looks just like normal stones). A necklace that is
palindrom has value equal to the sum of its gemstones' value. while a
necklace that is not palindrom has value zero.

Now the problem is: how to cut the given necklace so that the sum of the two necklaces's value is greatest. Output this value.

InputThe first line of input is a single integer T (1 ≤ T ≤ 10) -
the number of test cases. The description of these test cases follows.

For each test case, the first line is 26 integers: v
1, v
2, ..., v
26 (-100 ≤ v
i ≤ 100, 1 ≤ i ≤ 26), represent the value of gemstones of each kind.

The second line of each test case is a string made up of charactor
'a' to 'z'. representing the necklace. Different charactor representing
different kinds of gemstones, and the value of 'a' is v
1, the value of 'b' is v
2, ..., and so on. The length of the string is no more than 500000.

OutputOutput a single Integer: the maximum value General Li can get from the necklace.Sample Input

2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
aba
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
acacac

Sample Output

1
6 必须包含两边,否则价值为0。 manacher:
思路:价值可以前缀和处理一下。然后manacher,枚举分割点,取价值最大
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn=;
int p[maxn<<],T,sum[maxn],v[],pre[maxn],suf[maxn];
char s[maxn],snew[maxn<<]; int manacher(char* s) {
memset(pre,,sizeof(pre));
memset(suf,,sizeof(suf));
int l=,len=strlen(s);
snew[l++]='$';
snew[l++]='#';
for(int i=;s[i];i++) {
snew[l++]=s[i];
snew[l++]='#';
}
snew[l]=;
int id=,mx=;
for(int i=;i<l;i++) {
p[i]=mx>i?min(p[*id-i],mx-i):;
while(snew[i-p[i]]==snew[i+p[i]]) p[i]++;
if(i+p[i]>mx) {
mx=i+p[i];
id=i;
}
if(i-p[i]==) {
pre[p[i]-]=;//前缀
}
if(i+p[i]==l)
suf[len-(p[i]-)]=;//后缀
}
int maxx=-,tmp;
for(int i=;i<len-;i++) {//枚举分割点
tmp=;
if(pre[i]) {
tmp+=sum[i];
}
if(suf[i+]) {
tmp+=sum[len-]-sum[i];
}
maxx=max(tmp,maxx);
}
return maxx;
} int main() {
for(scanf("%d",&T);T;T--) {
for(int i=;i<;i++) scanf("%d",&v[i]);
scanf("%s",s);
sum[]=v[s[]-'a'];
for(int i=;s[i];i++) {
sum[i]=sum[i-]+v[s[i]-'a'];
}
printf("%d\n",manacher(s));
}
return ;
}

ekmp

将字符串S逆序,然后用S匹配T,T匹配S 如果i+extend[i]==len 说明 i~en-1 是回文串

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn=;
char s[maxn],t[maxn];
int T,sum[maxn],v[],Nexts[maxn],Nextt[maxn],extends[maxn],extendt[maxn]; void prekmp(int len) {
Nexts[]=len;
int j=;
while(j+<len&&s[j]==s[j+]) j++;
Nexts[]=j;
int k=;
for(int i=;i<len;i++) {
int L=Nexts[i-k],p=k+Nexts[k]-;
if(i+L<p+) Nexts[i]=L;
else {
j=max(,p-i+);
while(i+j<len&&s[i]==s[i+j]) j++;
Nexts[i]=j;
k=i;
}
}
Nextt[]=len;
j=;
while(j+<len&&s[j]==s[j+]) j++;
Nextt[]=j;
k=;
for(int i=;i<len;i++) {
int L=Nextt[i-k],p=k+Nextt[k]-;
if(i+L<p+) Nextt[i]=L;
else {
j=max(,p-i+);
while(i+j<len&&s[i]==s[j+i]) j++;
Nextt[i]=j;
k=i;
}
}
} void ekmp(int len) {
prekmp(len);
int j=;
while(j<len&&s[j]==t[j]) j++;
extendt[]=j;
int k=;
for(int i=;i<len;i++) {
int L=Nexts[i-k],p=k+extendt[k]-;
if(i+L<p+) extendt[i]=L;
else {
j=max(,p-i+);
while(i+j<len&&t[i+j]==s[j]) j++;
extendt[i]=j;
k=i;
}
}
j=;
while(j<len&&s[j]==t[j]) j++;
extends[]=j;
k=;
for(int i=;i<len;i++) {
int L=Nextt[i-k],p=k+extends[k]-;
if(i+L<p+) extends[i]=L;
else {
j=max(,p-i+);
while(i+j<len&&s[i+j]==t[j]) j++;
extends[i]=j;
k=i;
}
}
} int main() {
for(scanf("%d",&T);T;T--) {
for(int i=;i<;i++) scanf("%d",&v[i]);
scanf("%s",s);
int len=strlen(s);
for(int i=;i<len;i++) {
t[i]=s[len-i-];
if(i==) sum[i]=v[s[i]-'a'];
else sum[i]=sum[i-]+v[s[i]-'a'];
}
t[len]=;
ekmp(len);
int maxx=-,tmp;
for(int i=;i<len;i++) {
tmp=;
int j=len-i;
if(j+extends[j]==len) tmp+=sum[len-]-sum[len-i-];
if(i+extendt[i]==len) tmp+=sum[len-i-];
maxx=max(maxx,tmp);
}
printf("%d\n",maxx);
}
return ;
}

kuangbin专题十六 KMP&&扩展KMP HDU3613 Best Reward(前缀和+manacher or ekmp)的更多相关文章

  1. kuangbin专题十六 KMP&&扩展KMP HDU2609 How many (最小字符串表示法)

    Give you n ( n < 10000) necklaces ,the length of necklace will not large than 100,tell me How man ...

  2. kuangbin专题十六 KMP&&扩展KMP HDU2328 Corporate Identity

    Beside other services, ACM helps companies to clearly state their “corporate identity”, which includ ...

  3. kuangbin专题十六 KMP&&扩展KMP HDU1238 Substrings

    You are given a number of case-sensitive strings of alphabetic characters, find the largest string X ...

  4. kuangbin专题十六 KMP&&扩展KMP HDU3336 Count the string

    It is well known that AekdyCoin is good at string problems as well as number theory problems. When g ...

  5. kuangbin专题十六 KMP&&扩展KMP POJ3080 Blue Jeans

    The Genographic Project is a research partnership between IBM and The National Geographic Society th ...

  6. kuangbin专题十六 KMP&&扩展KMP HDU3746 Cyclic Nacklace

    CC always becomes very depressed at the end of this month, he has checked his credit card yesterday, ...

  7. kuangbin专题十六 KMP&&扩展KMP HDU2087 剪花布条

    一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? Input输入中含有一些数据,分别是成对出现的花布条和小 ...

  8. kuangbin专题十六 KMP&&扩展KMP HDU1686 Oulipo

    The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e ...

  9. kuangbin专题十六 KMP&&扩展KMP HDU1711 Number Sequence

    Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M ...

随机推荐

  1. web 应用 及 补充

    Highcharts 绘图配置 的函数及参数 web页面文本框修饰器 --- KindEditor web页面 之 超人性的点赞与狂踩 web页面 之 图片上传 web页面 之 评论盖楼 jQuery ...

  2. centos7的xfs配置

    XFS是扩展性高.高性能的文件系统.也是rhel7/centos7的默认文件系统.XFS支持metadata journaling,这使其能从crash中更快速的恢复.它也支持在挂载和活动的状态下进行 ...

  3. LAMP 3.2 mysql登陆

    mysql 服务启动时,不仅会监听 IP:Port,还会监听一个 socket,我们安装的 mysql 是监听在/tmp/mysql.sock.如果 php 是在本地,那么 php 和 mysql 通 ...

  4. viewpagerindicator+UnderlinePageIndicator+ viewpage切换

    布局文件activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/androi ...

  5. HotSpot JVM垃圾收集器

    HotSpot JVM收集器 上面有7中收集器,分为两块,上面为新生代收集器,下面是老年代收集器.如果两个收集器之间存在连线,就说明它们可以搭配使用. Serial(串行GC)收集器 Serial收集 ...

  6. Template Method模式和Strategy模式有何异同

    Template Method模式和Strategy模式有何异同 博客分类: 设计模式 Java  Template Method模式很容易理解,就是由基类提供一个模板,将各子类中不变的行为提取到基类 ...

  7. iOS 打包生成ipa文件(使用终端命令打包)

    1. 打开终端 2.在终端输入cd +空格 把工程文件直接拖到终端,然后回车 3. 在终端输入xcodebuild,回车 然后你可以发现工程文件里多了一个build文件夹 在build文件夹中,有一个 ...

  8. acrord32 pdf自动化

    这个东西就是帮助用户自动化处理pdf的 . 可以看作是adobe reader的命令行

  9. DR客户端一直连接服务器....(6)

    DR客户端一直连接服务器....(非未选择网卡)解决方法: 控制面板-->网络和 Internet-->网络连接,打开本地连接(以太网)属性,将IPV4协议前面的对勾去掉,重启DR 这样D ...

  10. delphi xe6 让 ListView 在 Android 可回弹[根据龟山阿卍原创修改为xe6版本]

    Delphi XE6 找出 FMX.Platform.Android.pas 档案,并复制到自己的 Project 路径里,找到 GetScrollingBehaviour 函数,修改成如下: uni ...