HDU 2389 ——Rain on your Parade——————【Hopcroft-Karp求最大匹配、sqrt(n)*e复杂度】
Time Limit:3000MS Memory Limit:165535KB 64bit IO Format:%I64d & %I64u
Description
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?
Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
Input
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= s i<= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
Output
Sample Input
Sample Output
2
2
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 3100;
const int INF = 0x3f3f3f3f;
const double eps = 1e-5;
struct Guest{
double x,y,s;
}guests[maxn];
struct Umbrella{
double x,y;
}umbrellas[maxn];
double distan(Guest a,Umbrella b){
double dx = a.x - b.x;
double dy = a.y - b.y;
return sqrt(dx*dx+dy*dy);
}
vector<int>G[maxn];
int Mx[maxn], My[maxn], dx[maxn], dy[maxn], used[maxn], dis;
bool SearchP(int _n){ //传参x部的顶点个数,处理出来dx与dy数组
queue<int>Q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
int dis = INF;
for(int i = 1; i <= _n; i++){
if(Mx[i] == -1){ //将x部的未盖点入队
dx[i] = 0;
Q.push(i);
}
}
int v;
while(!Q.empty()){
int u = Q.front(); Q.pop();
if(dx[u] > dis) break; //没有更小的dis
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(dy[v] == -1){ //如果y部的v没有访问过
dy[v] = dx[u] + 1; //更新dy
if(My[v] == -1){ //如果y部的v是未盖点,找到了最短增广路长度
dis = dy[v];
}else{
dx[My[v]] = dy[v] + 1; //更新v的x部匹配点
Q.push(My[v]); //将v的匹配点入队
}
}
}
}
return dis != INF; //找到了最短增广路
}
int dfs(int u){
int v;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(!used[v] && dy[v] == dx[u] + 1){ //v未访问过且距离相差为1
used[v] = 1;
if(My[v] != -1 && dy[v] == dis){ //如果v不是未盖点且已经等于最短增广路距原点距离,说明有更短的可以去增广
continue;
}
if(My[v] == -1 || dfs(My[v])){ //如果v是y部未盖点或者原来跟v匹配的x部节点能另外找到一个匹配
Mx[u] = v; //匹配u、v
My[v] = u;
return true;
}
}
}
return false;
}
int MaxMatch(int ln,int rn){ //传参左、右部顶点个数,返回最大匹配个数
int ret = 0;
memset(Mx,-1,sizeof(Mx)); //x部初始化未盖点
memset(My,-1,sizeof(My)); //y部初始化未盖点
while(SearchP(ln)){
memset(used,0,sizeof(used)); //初始化未访问
for(int i = 1; i <= ln; i++){
if(Mx[i] == -1 && dfs(i)){ //如果x部为未盖点且找到了增广路
ret++;
}
}
}
return ret;
}
int main(){
int T, cas = 0, n, m;
double t;
scanf("%d",&T);
while(T--){
scanf("%lf",&t);
scanf("%d",&m);
for(int i = 0; i <= m; i++){
G[i].clear();
}
for(int i = 1; i <= m; i++){
scanf("%lf%lf%lf",&guests[i].x,&guests[i].y,&guests[i].s);
}
scanf("%d",&n);
for(int i = 1; i <= n; i++){
scanf("%lf%lf",&umbrellas[i].x,&umbrellas[i].y);
}
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
double dd = distan(guests[i],umbrellas[j]);
if(guests[i].s * t >= dd){
G[i].push_back(j);
}
}
}
int res = MaxMatch(m,n);
printf("Scenario #%d:\n%d\n\n",++cas,res);
}
return 0;
}
HDU 2389 ——Rain on your Parade——————【Hopcroft-Karp求最大匹配、sqrt(n)*e复杂度】的更多相关文章
- HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配)
HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配) Description You're giving a ...
- HDU 2389 Rain on your Parade(二分匹配,Hopcroft-Carp算法)
Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Ot ...
- HDU 2389 Rain on your Parade
大意:在一个二维坐标系上有nx个人和ny把伞,每个人都有自己的移动速度,问有多少人可以再 time 时间内移动到不同的雨伞处(不允许两个人共用一把伞). 输入数据: 第一行是一个T代表T组测试数据 ...
- HDU 2389 Rain on your Parade 最大匹配(模板题)【HK算法】
<题目链接> 题目大意:有m个宾客,n把雨伞,预计时间t后将会下大雨,告诉你每个宾客的位置和速度,每把雨伞的位置,问你最多几个宾客能够拿到伞. 解题分析: 本题就是要我们求人与伞之间的最大 ...
- Hdu 3289 Rain on your Parade (二分图匹配 Hopcroft-Karp)
题目链接: Hdu 3289 Rain on your Parade 题目描述: 有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可 ...
- HDOJ 2389 Rain on your Parade
HK.... Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K ...
- Hdu2389 Rain on your Parade (HK二分图最大匹配)
Rain on your Parade Problem Description You’re giving a party in the garden of your villa by the sea ...
- 【HDOJ】2389 Rain on your Parade
读题显然是二分图匹配,看成guest与umbrella的匹配.匈牙利果断TLE了,其实时间卡的相当紧.HK过的,750ms. /* 2389 */ #include <iostream> ...
- Rain on your Parade---hdu2389(HK求最大匹配)
题目链接 题意:有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可以拿到雨伞? 就是求最大匹配的 Hopcroft-Karp复杂度 ...
随机推荐
- java 文件的读写操作
java 文件的读写操作 一.读: public String getSetting() { HttpServletRequest request=org.apache.struts2.Servle ...
- 企业sudo权限规划详解 (实测一个堆命令搞定)
简述问题: 随着公司的服务器越来越多,人员流动性也开始与日俱增,以往管理服务器的陈旧思想应当摒弃,公司需要有 更好更完善的权限体系,经过多轮沟通和协商,公司一致决定重新整理规划权限体系 ...
- 不准使用xib自定义控制器view的大小
1.AppDelegate.m // // 文 件 名:AppDelegate.m // // 版权所有:Copyright © 2018年 leLight. All rights reserved. ...
- DOS下修改IP地址
这两天不知道怎么回事,IPV4竟然无法修改,郁闷之极下,想到用命令行试试. 于是敲入下面的代码: >netsh <Enter> netsh>interface <Ente ...
- flink学习笔记-各种Time
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...
- 最小生成树+LCA【洛谷 P2245】 星际导航
[洛谷 P2245] 星际导航 题目描述 sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为了方便起见,我们可以认为宇宙是一张有N 个顶点和M 条边 ...
- 资深专家深度剖析Kubernetes API Server第3章(共3章)
在本系列的前两部分中我们介绍了API Server的总体流程,以及API对象如何存储到etcd中.在本文中我们将探讨如何扩展API资源. 在一开始的时候,扩展API资源的唯一方法是扩展相关API源代码 ...
- iOS 11导航栏设置BarButtonItem变形问题和错位问题
升级到 iOS 11,你可能会发现你的 App 的工具栏的行为出了点异常.比如奇点,我在使用过程中,发现工具栏时灵时不灵,感觉很难点到.这是怎么回事?通过 Xcode 的 Debug View Hie ...
- Cocoapds pod install时报错 :The sandbox is not sync with the Podfile.lock
解决方法简单:仅供其他小伙伴参考 删除项目工程本地文件夹中的xxx.workspace和Podfile.lock文件,然后重新pod install即可
- 20. js继承的6种方式
想要继承,就必须要提供个父类(继承谁,提供继承的属性) 一.原型链继承 重点:让新实例的原型等于父类的实例. 特点: 1.实例可继承的属性有:实例的构造函数的属性,父类构造函数属性,父类原型的属性.( ...