HDU 2389 ——Rain on your Parade——————【Hopcroft-Karp求最大匹配、sqrt(n)*e复杂度】
Time Limit:3000MS Memory Limit:165535KB 64bit IO Format:%I64d & %I64u
Description
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
Can you help your guests so that as many as possible find an umbrella before it starts to pour?
Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
Input
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= s i<= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
The absolute value of all coordinates is less than 10000.
Output
Sample Input
Sample Output
2
2
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 3100;
const int INF = 0x3f3f3f3f;
const double eps = 1e-5;
struct Guest{
double x,y,s;
}guests[maxn];
struct Umbrella{
double x,y;
}umbrellas[maxn];
double distan(Guest a,Umbrella b){
double dx = a.x - b.x;
double dy = a.y - b.y;
return sqrt(dx*dx+dy*dy);
}
vector<int>G[maxn];
int Mx[maxn], My[maxn], dx[maxn], dy[maxn], used[maxn], dis;
bool SearchP(int _n){ //传参x部的顶点个数,处理出来dx与dy数组
queue<int>Q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
int dis = INF;
for(int i = 1; i <= _n; i++){
if(Mx[i] == -1){ //将x部的未盖点入队
dx[i] = 0;
Q.push(i);
}
}
int v;
while(!Q.empty()){
int u = Q.front(); Q.pop();
if(dx[u] > dis) break; //没有更小的dis
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(dy[v] == -1){ //如果y部的v没有访问过
dy[v] = dx[u] + 1; //更新dy
if(My[v] == -1){ //如果y部的v是未盖点,找到了最短增广路长度
dis = dy[v];
}else{
dx[My[v]] = dy[v] + 1; //更新v的x部匹配点
Q.push(My[v]); //将v的匹配点入队
}
}
}
}
return dis != INF; //找到了最短增广路
}
int dfs(int u){
int v;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(!used[v] && dy[v] == dx[u] + 1){ //v未访问过且距离相差为1
used[v] = 1;
if(My[v] != -1 && dy[v] == dis){ //如果v不是未盖点且已经等于最短增广路距原点距离,说明有更短的可以去增广
continue;
}
if(My[v] == -1 || dfs(My[v])){ //如果v是y部未盖点或者原来跟v匹配的x部节点能另外找到一个匹配
Mx[u] = v; //匹配u、v
My[v] = u;
return true;
}
}
}
return false;
}
int MaxMatch(int ln,int rn){ //传参左、右部顶点个数,返回最大匹配个数
int ret = 0;
memset(Mx,-1,sizeof(Mx)); //x部初始化未盖点
memset(My,-1,sizeof(My)); //y部初始化未盖点
while(SearchP(ln)){
memset(used,0,sizeof(used)); //初始化未访问
for(int i = 1; i <= ln; i++){
if(Mx[i] == -1 && dfs(i)){ //如果x部为未盖点且找到了增广路
ret++;
}
}
}
return ret;
}
int main(){
int T, cas = 0, n, m;
double t;
scanf("%d",&T);
while(T--){
scanf("%lf",&t);
scanf("%d",&m);
for(int i = 0; i <= m; i++){
G[i].clear();
}
for(int i = 1; i <= m; i++){
scanf("%lf%lf%lf",&guests[i].x,&guests[i].y,&guests[i].s);
}
scanf("%d",&n);
for(int i = 1; i <= n; i++){
scanf("%lf%lf",&umbrellas[i].x,&umbrellas[i].y);
}
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
double dd = distan(guests[i],umbrellas[j]);
if(guests[i].s * t >= dd){
G[i].push_back(j);
}
}
}
int res = MaxMatch(m,n);
printf("Scenario #%d:\n%d\n\n",++cas,res);
}
return 0;
}
HDU 2389 ——Rain on your Parade——————【Hopcroft-Karp求最大匹配、sqrt(n)*e复杂度】的更多相关文章
- HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配)
HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配) Description You're giving a ...
- HDU 2389 Rain on your Parade(二分匹配,Hopcroft-Carp算法)
Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K (Java/Ot ...
- HDU 2389 Rain on your Parade
大意:在一个二维坐标系上有nx个人和ny把伞,每个人都有自己的移动速度,问有多少人可以再 time 时间内移动到不同的雨伞处(不允许两个人共用一把伞). 输入数据: 第一行是一个T代表T组测试数据 ...
- HDU 2389 Rain on your Parade 最大匹配(模板题)【HK算法】
<题目链接> 题目大意:有m个宾客,n把雨伞,预计时间t后将会下大雨,告诉你每个宾客的位置和速度,每把雨伞的位置,问你最多几个宾客能够拿到伞. 解题分析: 本题就是要我们求人与伞之间的最大 ...
- Hdu 3289 Rain on your Parade (二分图匹配 Hopcroft-Karp)
题目链接: Hdu 3289 Rain on your Parade 题目描述: 有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可 ...
- HDOJ 2389 Rain on your Parade
HK.... Rain on your Parade Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 655350/165535 K ...
- Hdu2389 Rain on your Parade (HK二分图最大匹配)
Rain on your Parade Problem Description You’re giving a party in the garden of your villa by the sea ...
- 【HDOJ】2389 Rain on your Parade
读题显然是二分图匹配,看成guest与umbrella的匹配.匈牙利果断TLE了,其实时间卡的相当紧.HK过的,750ms. /* 2389 */ #include <iostream> ...
- Rain on your Parade---hdu2389(HK求最大匹配)
题目链接 题意:有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可以拿到雨伞? 就是求最大匹配的 Hopcroft-Karp复杂度 ...
随机推荐
- Linux文件锁flock ,检测进程是否已经存在
在多个进程同时操作同一份文件的过程中,很容易导致文件中的数据混乱,需要锁操作来保证数据的完整性,这里介绍的针对文件的锁,称之为“文件锁”-flock. 头文件:#include<sys/fil ...
- nginx 部署 .net core 获取的客户端ip为127.0.0.1
采用nginx和.net core 部署一套api接口到服务器上,发现获取到的ip地址为127.0.0.1 经过检查发现,需要在nginx配置上以下参数 proxy_set_header Host $ ...
- 删除XML文档中某节点
前几天Insus.NET在写了一系列XML文档进行操作.创建 <怎样创建XML文档> http://www.cnblogs.com/insus/p/3276944.html & ...
- CSS3 -- FlexBox(弹性盒子)
盒子模型 CSS中有一种基础设计模式叫盒模型,盒模型定义了Web页面中的元素如何来解析. 在盒模型中主要包括width.height.border.background.padding和margin这 ...
- AOP切点相关
1.切点定义 切点定义包含两个部分 一个切入点表达式 一个包含名字和任意参数的方法签名 package com.sysker.aspect; import org.aspectj.lang.annot ...
- 给label添加点击事件
后台代码: lb1.Attributes.Add("onclick", "getSN('" + lb1.Text.Trim() + "')" ...
- winform 动态添加控件及事件
for (int i = 0; i < 4; i++) { Button btn = new Button(); //btn.Name = dt.Rows[i]["ANDON_CONT ...
- 设置django在linux后台运行&查看端口使用
1.后台运行(&),允许所有用户(0.0.0.0)访问,端口为8888 nohup python manage.py runserver 0.0.0.0 8888 & 2.由端口号88 ...
- 状压DP 【洛谷P3694】 邦邦的大合唱站队
[洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...
- WebForm与MVC混用 (转)
http://blog.csdn.net/leftfist/article/details/11591231