Rain on your Parade

Time Limit:3000MS     Memory Limit:165535KB     64bit IO Format:%I64d & %I64u

Description

You’re giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It’s a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined. It could be the perfect end of a beautiful day. 
But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news. 
You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others. 
Can you help your guests so that as many as possible find an umbrella before it starts to pour?

Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.

 

Input

The input starts with a line containing a single integer, the number of test cases. 
Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= s i<= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space. 
The absolute value of all coordinates is less than 10000. 
 

Output

For each test case, write a line containing “Scenario #i:”, where i is the number of the test case starting at 1. Then, write a single line that contains the number of guests that can at most reach an umbrella before it starts to rain. Terminate every test case with a blank line. 
 

Sample Input

2
1
2
1 0 3
3 0 3
2
4 0
6 0
1
2
1 1 2
3 3 2
2
2 2
4 4
 

Sample Output

Scenario #1:
2
Scenario #2:
2
 
 
题目大意:T组测试数据。每组给t表示还有t分钟要下雨,然后给n,表示有n名游客,分别给出x,y,s表示二维坐标及移动速度。接着是m表示有m个避雨亭,给出x,y表示二维坐标,每个游客都不愿意跟其他人共有避雨亭,问t分钟后,最多可以有多少个游客能避雨。
 
解题思路:最大匹配。游客跟避雨亭分为二部。如果游客可以移动的距离比当前他离某个避雨亭的距离大,说明他可以过去避雨。就连一条边。对于所有游客都枚举一下。建图完成。然而这个题目不是难在建图,而是数据量大,二部图两边的顶点各有3000个。那么可能最大到9*10^6条边,如果用Hungary的v*e的复杂度,那么肯定会超时。所以这里我们用Hopcroft-Karp求最大匹配。
 
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 3100;
const int INF = 0x3f3f3f3f;
const double eps = 1e-5;
struct Guest{
double x,y,s;
}guests[maxn];
struct Umbrella{
double x,y;
}umbrellas[maxn];
double distan(Guest a,Umbrella b){
double dx = a.x - b.x;
double dy = a.y - b.y;
return sqrt(dx*dx+dy*dy);
}
vector<int>G[maxn];
int Mx[maxn], My[maxn], dx[maxn], dy[maxn], used[maxn], dis;
bool SearchP(int _n){ //传参x部的顶点个数,处理出来dx与dy数组
queue<int>Q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
int dis = INF;
for(int i = 1; i <= _n; i++){
if(Mx[i] == -1){ //将x部的未盖点入队
dx[i] = 0;
Q.push(i);
}
}
int v;
while(!Q.empty()){
int u = Q.front(); Q.pop();
if(dx[u] > dis) break; //没有更小的dis
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(dy[v] == -1){ //如果y部的v没有访问过
dy[v] = dx[u] + 1; //更新dy
if(My[v] == -1){ //如果y部的v是未盖点,找到了最短增广路长度
dis = dy[v];
}else{
dx[My[v]] = dy[v] + 1; //更新v的x部匹配点
Q.push(My[v]); //将v的匹配点入队
}
}
}
}
return dis != INF; //找到了最短增广路
}
int dfs(int u){
int v;
for(int i = 0; i < G[u].size(); i++){
v = G[u][i];
if(!used[v] && dy[v] == dx[u] + 1){ //v未访问过且距离相差为1
used[v] = 1;
if(My[v] != -1 && dy[v] == dis){ //如果v不是未盖点且已经等于最短增广路距原点距离,说明有更短的可以去增广
continue;
}
if(My[v] == -1 || dfs(My[v])){ //如果v是y部未盖点或者原来跟v匹配的x部节点能另外找到一个匹配
Mx[u] = v; //匹配u、v
My[v] = u;
return true;
}
}
}
return false;
}
int MaxMatch(int ln,int rn){ //传参左、右部顶点个数,返回最大匹配个数
int ret = 0;
memset(Mx,-1,sizeof(Mx)); //x部初始化未盖点
memset(My,-1,sizeof(My)); //y部初始化未盖点
while(SearchP(ln)){
memset(used,0,sizeof(used)); //初始化未访问
for(int i = 1; i <= ln; i++){
if(Mx[i] == -1 && dfs(i)){ //如果x部为未盖点且找到了增广路
ret++;
}
}
}
return ret;
}
int main(){
int T, cas = 0, n, m;
double t;
scanf("%d",&T);
while(T--){
scanf("%lf",&t);
scanf("%d",&m);
for(int i = 0; i <= m; i++){
G[i].clear();
}
for(int i = 1; i <= m; i++){
scanf("%lf%lf%lf",&guests[i].x,&guests[i].y,&guests[i].s);
}
scanf("%d",&n);
for(int i = 1; i <= n; i++){
scanf("%lf%lf",&umbrellas[i].x,&umbrellas[i].y);
}
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
double dd = distan(guests[i],umbrellas[j]);
if(guests[i].s * t >= dd){
G[i].push_back(j);
}
}
}
int res = MaxMatch(m,n);
printf("Scenario #%d:\n%d\n\n",++cas,res);
}
return 0;
}

  

 
 

HDU 2389 ——Rain on your Parade——————【Hopcroft-Karp求最大匹配、sqrt(n)*e复杂度】的更多相关文章

  1. HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配)

    HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配) Description You're giving a ...

  2. HDU 2389 Rain on your Parade(二分匹配,Hopcroft-Carp算法)

    Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Ot ...

  3. HDU 2389 Rain on your Parade

    大意:在一个二维坐标系上有nx个人和ny把伞,每个人都有自己的移动速度,问有多少人可以再 time 时间内移动到不同的雨伞处(不允许两个人共用一把伞).   输入数据: 第一行是一个T代表T组测试数据 ...

  4. HDU 2389 Rain on your Parade 最大匹配(模板题)【HK算法】

    <题目链接> 题目大意:有m个宾客,n把雨伞,预计时间t后将会下大雨,告诉你每个宾客的位置和速度,每把雨伞的位置,问你最多几个宾客能够拿到伞. 解题分析: 本题就是要我们求人与伞之间的最大 ...

  5. Hdu 3289 Rain on your Parade (二分图匹配 Hopcroft-Karp)

    题目链接: Hdu 3289 Rain on your Parade 题目描述: 有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可 ...

  6. HDOJ 2389 Rain on your Parade

     HK.... Rain on your Parade Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K ...

  7. Hdu2389 Rain on your Parade (HK二分图最大匹配)

    Rain on your Parade Problem Description You’re giving a party in the garden of your villa by the sea ...

  8. 【HDOJ】2389 Rain on your Parade

    读题显然是二分图匹配,看成guest与umbrella的匹配.匈牙利果断TLE了,其实时间卡的相当紧.HK过的,750ms. /* 2389 */ #include <iostream> ...

  9. Rain on your Parade---hdu2389(HK求最大匹配)

    题目链接 题意:有n个客人,m把雨伞,在t秒之后将会下雨,给出每个客人的坐标和每秒行走的距离,以及雨伞的位置,问t秒后最多有几个客人可以拿到雨伞? 就是求最大匹配的  Hopcroft-Karp复杂度 ...

随机推荐

  1. Vue v-if ToolList

    可根据v-if="IsOk",动态判断标签是否展示 <template> <div id="app"> <input type=& ...

  2. sonar Failed to execute goal org.sonarsource.scanner.maven:sonar-maven-plugin:3.4.0.905:sonar

    背景: 今天在项目根目录执行maven sonar:sonar ,报错信息如下,然后就各种的搜,折腾了多半天天也没找出解决办法,最后打算放弃时,看到一遍文章说是mysql  max_allowed_p ...

  3. ScriptableObject

    什么是ScriptableObject? 点击查看Unity官网的描述 直译过来就是“脚本化对象”,换言之这类作为存储结构化的数据来使用,并写入Unity的资源.asset文件去存储一组数据,取用的时 ...

  4. new types may not be defined in a return type(c++语言编译错误,处理)

    在写程序的时候,定义类时要在大括号后面加上: class Point{ public: Point(int a,int b); Point(const Point &p); int getx( ...

  5. Google Maglev 牛逼的网络负载均衡器(转)

    https://segmentfault.com/a/1190000009565788 Maglev 是什么 Maglev 是谷歌搞的一个工作在三层(IP层)的网络负载均衡器, 它是一个运行在普通的 ...

  6. 新姿势!Redis中调用Lua脚本以实现原子性操作

    背景:有一服务提供者Leader,有多个消息订阅者Workers.Leader是一个排队程序,维护了一个用户队列,当某个资源空闲下来并被分配至队列中的用户时,Leader会向订阅者推送消息(消息带有唯 ...

  7. Java 大数相乘、大数相加、大数相减

    思路来源:: https://blog.csdn.net/lichong_87/article/details/6860329 /** * @date 2018/6/22 * @description ...

  8. win10全半角切换

    shift+sapce shift+sapce:全半角切换快捷键,编程的时候发现英文是这种状态,就需要用快捷键切换成半角. (查过老是忘记,在这里写一下记住它)

  9. vue学习二:

    vue的常用标签: 1.<router-link to=''>主要实现跳转链接功能,属性to='/'即是跳转到path为'/'的路径. 2.v-bind动态绑定指令,格式为:v-bind: ...

  10. Maven with Scala

    下面是一个在Maven使用Scala的pom.xml <?xml version="1.0" encoding="UTF-8" standalone=&q ...