Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes 题意:费马定理给出a^p=a mod p(p为素数),一些合数也有类似的状况,判断输入p,a
先判断 p是否为素数,后判断是否满足定理
#include<iostream>
#include<cstdio>
#define LL long long
#define N 100000
using namespace std;
int prime[N];
int pn=0;
bool vis[N];
LL pow(LL a,LL n,LL mod)
{
LL base=a,ret=1;
while(n)
{
if(n&1) ret=(ret*base)%mod;
base=(base*base)%mod;
n>>=1;
}
return ret%mod;
}
bool judge(int n)
{
for(int i=0;prime[i]*prime[i]<=n;i++)
{
if(n%prime[i]==0)
return 1;
}
return 0;
}
int main()
{
for (int i = 2; i < N; i++) {
if (vis[i]) continue;
prime[pn++] = i;
for (int j = i; j < N; j += i)
vis[j] = 1;
}
int a,p;
while(~scanf("%d%d",&p,&a),a&&p)
{
if(!judge(p)){
puts("no");
continue;
}
if(pow(a,p,p)%p==a)
puts("yes");
else
puts("no"); }
}

  

poj_3641_Pseudoprime numbers的更多相关文章

  1. Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range

    在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...

  2. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  3. [LeetCode] Add Two Numbers II 两个数字相加之二

    You are given two linked lists representing two non-negative numbers. The most significant digit com ...

  4. [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字

    Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...

  5. [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数

    Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...

  6. [LeetCode] Bitwise AND of Numbers Range 数字范围位相与

    Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...

  7. [LeetCode] Valid Phone Numbers 验证电话号码

    Given a text file file.txt that contains list of phone numbers (one per line), write a one liner bas ...

  8. [LeetCode] Consecutive Numbers 连续的数字

    Write a SQL query to find all numbers that appear at least three times consecutively. +----+-----+ | ...

  9. [LeetCode] Compare Version Numbers 版本比较

    Compare two version numbers version1 and version1.If version1 > version2 return 1, if version1 &l ...

随机推荐

  1. (转)shell中test命令方法详解

    test命令用法.功能:检查文件和比较值 shell中test命令方法详解 原文:https://www.cnblogs.com/guanyf/p/7553940.html 1)判断表达式 if te ...

  2. maven实战迷你版记录

    1.  ~/.m2 文件 默认情况下,该文件夹下放置了 Maven 本地 仓库.m2/repository.所有的 Maven 构件(artifact)都被存储到该仓库中,以方便重用. 默认情况下,~ ...

  3. pat04-树5. File Transfer (25)

    04-树5. File Transfer (25) 时间限制 150 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue We have ...

  4. C#取得程序的根目录以及判断文件是否存在

    一:获取根目录的方法 取得控制台应用程序的根目录方法方法1.Environment.CurrentDirectory 取得或设置当前工作目录的完整限定路径方法2.AppDomain.CurrentDo ...

  5. 关于“.WriteLine()是否需要这么多重载”的笔记

    在Stack Overflow上看到一个较热门的问题,作笔记于此. Console.WriteLine()有以下如此多的重载: public static void WriteLine(string ...

  6. Python函数(1)

    一.Python函数介绍 函数时组织好的,可重复的,用来实现单一,或相关联功能的代码段. 函数的使用原则时先定义,后调用:事先准备工具的过程即函数的定义,遇到应用场景拿来当工具用即函数的调用. 函数的 ...

  7. 我的第一台 Mac

    我的第一台 Mac 心里的这棵草长了一年多之后终于狠心剁手了. 2018年11月6号下单 2018 款 MBP 2.6/32/512 定制款,7号早上到手 --- 感受(个人主观感觉-)

  8. PHP与redis的操作

    String 类型操作 string是redis最基本的类型,而且string类型是二进制安全的.意思是redis的string可以包含任何数据.比如jpg图片或者序列化的对象   $redis-&g ...

  9. #include stdio.h(5)

    #include <stdio.h> int main() { //1.数组的排序-冒泡排序 /* 1.规则:相邻的两个数据进行比较 2.如果有N个数据,需要选择N-1次参照物来比较, 因 ...

  10. DIV内数据删除操作

    对于数据操作,前端提供静态方法,交给后台去操作 此处记录一下,待优化,不过精华都在里面了 静态页面: 鼠标移上显示: html代码 css代码 js代码