【BZOJ 3238】差异 后缀自动机+树形DP
题意
给定字符串,令$s_i$表示第$i$位开始的后缀,求$\sum_{1\le i < j \le n} len(s_i)+len(s_j)-2\times lcp(s_i,s_j)$
先考虑前面的和式,直接计算为$\frac{n(n^2-1)}{2}$,考虑后面的和式,$lcp$相关可以用sam求解,sam形成的parent树是原串的前缀树,所以两个串的最长公共后缀是在parent树上最近公共祖先对应的状态的长度$maxlen_s-maxlen_{pa_s}$,将原串反向建立sam得到后缀树,parent树上每个状态的子串个数为$Right_s$,每个状态的贡献为$2\times \binom{Right_s}{2}\times (maxlen_s-maxlen_{pa_s})$,在parent树上跑一遍dp即可求出
时间复杂度$O(n)$
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1001000;
int trans[N][30], pa[N], maxlen[N], sz, root, last, Right[N];
inline void init_sam() {
memset(trans, 0, sizeof(trans));
root = last = sz = 1;
}
inline void extend(int c, int x) {
int p = last, np = ++sz; last = np; maxlen[np] = x; Right[np] = 1;
for(; p && !trans[p][c]; p = pa[p]) trans[p][c] = np;
if(!p) {pa[np] = root; return;}
int q = trans[p][c];
if(maxlen[q] == maxlen[p] + 1) {
pa[np] = q;
}else {
int nq = ++sz;
memcpy(trans[nq], trans[q], sizeof(trans[q]));
pa[nq] = pa[q]; maxlen[nq] = maxlen[p] + 1; pa[q] = pa[np] = nq;
for(; trans[p][c] == q; p = pa[p]) trans[p][c] = nq;
}
}
inline void build(char *s) {
int len = strlen(s);
for(int i = 0; i < len; ++i) extend(s[i] - 'a', i + 1);
}
int cnt, head[N], nxt[N], to[N];
inline void init_edge() {cnt = 0; memset(head, -1, sizeof(head));}
inline void add(int u, int v) {to[cnt] = v; nxt[cnt] = head[u]; head[u] = cnt++;}
LL ans = 0;
int dfs(int u) {
for(int i = head[u]; ~i; i = nxt[i]) Right[u] += dfs(to[i]);
ans -= 1LL * Right[u] * (Right[u] - 1) * (maxlen[u] - maxlen[pa[u]]);
return Right[u];
}
inline void get() {
init_edge();
for(int i = 2; i <= sz; ++i) add(pa[i], i);
dfs(root);
}
char str[N];
int main() {
scanf("%s", str);
int len = strlen(str);
reverse(str, str + len);
init_sam();
build(str);
ans = 1LL * len * (len - 1) * (len + 1) / 2;
get();
cout << ans << endl;
return 0;
}
【BZOJ 3238】差异 后缀自动机+树形DP的更多相关文章
- BZOJ 3238: [Ahoi2013]差异 后缀自动机 树形dp
http://www.lydsy.com/JudgeOnline/problem.php?id=3238 就算是全局变量,也不要忘记,初始化(吐血). 长得一副lca样,没想到是个树形dp(小丫头还有 ...
- BZOJ.3238.[AHOI2013]差异(后缀自动机 树形DP/后缀数组 单调栈)
题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1 ...
- BZOJ.4199.[NOI2015]品酒大会(后缀自动机 树形DP)
BZOJ 洛谷 后缀数组做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 只考虑求极长相同子串,即所有后缀之间的LCP. 而后缀的LCP在后缀树的LCA处.同差异这道题,在每个点处 ...
- BZOJ 3238 差异
BZOJ 3238 差异 看这个式子其实就是求任意两个后缀的 $ LCP $ 长度和.前面的 $ len(T_i)+len(T_j) $ 求和其实就是 $ n(n-1)(n+1)/2 $ ,这个是很好 ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- BZOJ 3238 [Ahoi2013]差异 ——后缀自动机
后缀自动机的parent树就是反串的后缀树. 所以只需要反向构建出后缀树,就可以乱搞了. #include <cstdio> #include <cstring> #inclu ...
- BZOJ 2806 Luogu P4022 [CTSC2012]Cheat (广义后缀自动机、DP、二分、单调队列)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2806 (luogu) https://www.luogu.org/pro ...
随机推荐
- dynamic与var
dynamic与var示例 var是一种语法省略写法,编译器会根据上下文推断出正确的类型. , , , , , , , }; foreach (var item in scores) { Consol ...
- YUM安装(卸载)KDE和GNOME
YUM安装(卸载)KDE和GNOME显示系统已经安装的组件,和可以安装的组件:#yum grouplist 如果系统安装之初采用最小化安装,没有安装xwindow,那么先安装:#yum groupin ...
- java 十进制转十六进制、十进制转二进制、二进制转十进制、二进制转十六进制
//10进制转16进制 Integer.toHexString(20); //10进制转2进制 Integer.toBinaryString(10); //16进制转10进制 Integer.pars ...
- iOS中获取系统相册中的图片
一.获取单张图片 思路: 1.利用UIImagePickerController可以从系统自带的App(照片\相机)中获得图片 2.设置代理,遵守代理协议 注意这个UIImagePickerContr ...
- ios __block typeof 编译错误解决
type specifier missing a parameter list without types is only allowed in a function definition 解决: 工 ...
- Hive高级
HiveServer2 概述: https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Overview2 客户端: https:// ...
- Python菜鸟之路:Python基础-线程池注释
import sys import threading import Queue import traceback # 定义一些Exception,用于自定义异常处理 class NoResultsP ...
- Django 之 admin组件使用&源码解析
admin组件使用 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.可以在项目的 settings.py 中的 INSTALLED ...
- Linux c编程:线程属性
前面介绍了pthread_create函数,并且当时的例子中,传入的参数都是空指针,而不是指向pthread_attr_t结构的指针.可以使用pthread_attr_t结构修改线程默认属性,并把这些 ...
- Office 2013“永久激活信息”备份
Office 2013“永久激活信息”备份还原简明教程及成功恢复的注意事项Office 2013永久激活后及时备份激活信息可以保证重装后快速激活.网上也有流行的各种备份工具,虽然操作简单,但是如果不理 ...