文章转自http://blog.163.com/hljmdjlln@126/blog/static/5473620620120412525181/

做LC上的题"Palindrome number"时翻到此文章,经过少量修改后如下。

  回文数是数学界中的一种有趣的现象。比如121就是一个回文数。回文数的数字互相对应,从中间一个任意一位数字起,左右每隔一个的数字都相等。回文数有许多神奇的规律和奥秘。主要分为读数回文数、平方回文数、乘积回文数以及倒乘回文数。

一、读数回文数
  【解释】读数回文数是指一个正整数,正着读和倒着读内容一致。
  【举例】数字:98789  
  正读:九万八千七百八十九(98789)
  倒读:九万八千七百八十九(98789)
  正读与倒读内容一致,所以这个数字就是读书回文数。 
 注:读书回文数的数位都是奇数个。
                         
二、 平方回文数
【释】平方回文数是指,一个数的平方是一个回文数。
【举例】11^2=121,111^2=12321,1111^2=1234321 ,122^2=484
                         
 三、回文算式
【解释】等号左边是两个或多个因数相乘,右边是它们的乘积或几个因数相乘。如果把每个算式中的“×”和“=”去掉,那么,它们都变成回文数,所以,我们不妨把这些算式叫做“回文算式”。
【举例】3×51=153
             6×21=126
             4307×62=267034
             9×7×533=33579
                         
             12×42=24×21 
             34×86=68×43 
             102×402=204×201 
             1012×4202=2024×2101 
                         
        不知你是否注意到,如果分别把上面的回文算式等号两边的因数交换位置,得到的仍是一个回文算式。比如:

42×12=21×24 ,
                 43×68=86×34,
           仍是回文算式。 
        还有更奇妙的回文算式,请看: 
                 12×231=132×21(积是2772), 
                 12×4032=2304×21(积是48384), 
           这种回文算式,连乘积都是回文数。 
  注:四位的回文数一定能被11整除。设它为abba,那它等于a*1000+b*100+b*10+a=1001a+110b,能被11整除。

另外,在数学上还有一种算式称为『回文式』。回文式即是从左右看皆通的算式。
       你们且看 112 x 113 = 12656 这条算式的特别之处?只要把此算式由尾写起,即成为以下式子
                        65621 = 311 x 211,可以发现两条算式均成立。
                        112不但乘以113有此特性,乘以某些数也有同样的效果:
             (1) 112 x 124 = 13888 将式子由右到左写是 88831 = 421 x 211
             (2) 112 x 133 = 14896 将式子由右到左写是 69841 = 331 x 211
             (3) 112 x 223 = 24976 将式子由右到左写是 67942 = 322 x 211
         其实,某些平方数也有此结果:
                       12 x 12=144将式子由右到左写是 441= 21 x 21
                       13 x 13=169将式子由右到左写是 961=31 x 31
         经过仔细发现,我们在完全平方数,完全立方数中也找到了不少『回文』的例子,它令我们理性的数学平添了不少感性的诗情画意。

有趣的回文数(Palindrome number)的更多相关文章

  1. [Swift]LeetCode9. 回文数 | Palindrome Number

    Determine whether an integer is a palindrome. An integer is a palindrome when it reads the same back ...

  2. Leetcode 9 回文数Palindrome Number

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...

  3. [2014亚马逊amazon] 在线笔试题 大于非负整数N的第一个回文数 Symmetric Number

    1.题目 如标题,求大于整数N(N>=0)的第一个回文数的字符串表示形式. 这个题目也是当时笔试第一次见到,花了一个小时才做出了.慢慢总结还是挺简单的. 2.分析 分析如下: (1)一位数N(9 ...

  4. 大于非负整数N的第一个回文数 Symmetric Number

    1.题目 如标题,求大于整数N(N>=0)的第一个回文数的字符串表示形式. 2.样例 1  --> 2 9  -->11 12345 -->12421 123456 --> ...

  5. 有趣的数-回文数(Palindrome number)

    文章转自http://blog.163.com/hljmdjlln@126/blog/static/5473620620120412525181/ 做LC上的题"Palindrome num ...

  6. leetcode 9 Palindrome Number 回文数

    Determine whether an integer is a palindrome. Do this without extra space. click to show spoilers. S ...

  7. LeetCode Problem 9:Palindrome Number回文数

    描述:Determine whether an integer is a palindrome. Do this without extra space. Some hints: Could nega ...

  8. Leetcode 3——Palindrome Number(回文数)

    Problem: Determine whether an integer is a palindrome. Do this without extra space. 简单的回文数,大一肯定有要求写过 ...

  9. palindrome number(回文数)

    Determine whether an integer is a palindrome. Do this without extra space. Some hints: Could negativ ...

随机推荐

  1. [Android UI]View基础知识

    一.简介 在安卓中,View代表视图,是安卓中十分重要的一个概念,重要程度不亚于四大组件,用户每时每刻都在与View打交道,包括展示数据.事件传递等.因此,熟练掌握View的应用以及原理是Androi ...

  2. 9.JSP进阶

    1.JSP内置对象 JSP容器在_jspService()方法中声明并初始化9个内置对象. 名称 作用 接口/类 out 客户端打开的输出流 javax.servlet.jsp.JspWriter 接 ...

  3. Error: Duplicate key name 'PCS_STATS_IDX' (state=42000,code=1061) ----Hive schematool -initSchema -dbType mysql

    schematool -initSchema -dbType mysqlMetastore connection URL: jdbc:mysql://localhost/metastore_db?cr ...

  4. web前端开发道路

    https://github.com/z-jingjie/developer-roadmap-zh-CN

  5. Vue.js-----轻量高效的MVVM框架(五、计算属性)

    #基础例子 <div id="dr01"> <h4>#基础例子</h4> <div> num01={{num01}}, num02= ...

  6. 转 Python多版本管理-pyenv

    #######for linux https://www.cnblogs.com/saneri/p/7642316.html 经常遇到这样的情况: 系统自带的Python是2.x,自己需要Python ...

  7. Caused by: java.net.URISyntaxException: Relative path in absolute URI

    <property> <name>hive.exec.scratchdir</name> <value>/tmp/hive</value> ...

  8. 性能测试工具LoadRunner22-LR之Analysis 简介

    Analysis功能: 对测试运行结果进行查看.分析和比较 导入分析文件 注意LoadRunner Results文件和Analysis Session Files的区别.LoadRunner Res ...

  9. IntelliJ IDEA里找不到javax.servlet的jar包

    此处有小坑,请注意: https://mvnrepository.com网站查询到的servlet的包的格式为: provided group: 'javax.servlet', name: 'jav ...

  10. apache POI技术的使用

    Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. 下载开发包: 解压上面的zip文件: 在项目中引入 ...