根据费马小定理:

对于素数n,a(0<a<n),a^(n-1)=1(mod n)

如果对于一个<n的正整数a,a^(n-1)!=1(mod n),则n必不是素数。

然后就可以随机生成  <n的数,如果都满足,那n就极有可能是素数。

看书上说,一次素数测试的成功率是 3/4,也就是失败率是1/4,那测m次是错误的概率为:(1/4)^m.可见m稍微大一点就基本不会出错。

但是还有一种数叫,卡迈克尔数。

卡迈克尔数: 一个合数n,对所有满足 gcd(b,n)=1的正整数b都有b^(n-1)=1(mod n) 成立。

因为这种数的存在,在检测这些数是否是素数时可能正确率就会降低很多。

这是我们可以采用二次探测:

如果p是一个素数,且 0<x<p , 则方程x^2=1(mod p) 的解为x=1或x=p-1

换句话说,如果发现x^2=1(mod p) 成立且x!=1&&x!=p-1,则p不为素数。

对照着卡迈克尔数,我们可以发现卡迈克尔数是有很大可能无法通过二次探测的。 因为对于某个数为b, 如果gcd(b,n)=1且b^(n-1)=1(mod n)成立,如果b^( (n-1)/2 )不为1和n-1则n不为素数。

在比赛中,基本可以看做是 O(1)的素数检测。 但是因为要一定次数随机,速度问题也是要考虑的。

//输入一个long long 范围内的素数,是素数返回true,否则返回false。定义检测次数TIMES,错误率为(1/4)^TIMES
#define TIMES 10 long long GetRandom(long long n)
{
//cout<<RAND_MAX<<endl;
long long num = (((unsigned long long)rand() + )*rand())%n;
return num+;
} long long Mod_Mul(long long a,long long b,long long mod)
{
long long msum=;
while(b)
{
if(b&) msum = (msum+a)%mod;
b>>=;
a = (a+a)%mod;
}
return msum;
} long long Quk_Mul(long long a,long long b,long long mod)
{
long long qsum=;
while(b)
{
if(b&) qsum=Mod_Mul(qsum,a,mod);
b>>=;
a=Mod_Mul(a,a,mod);
}
return qsum;
} bool Miller_Rabin(long long n)
{
if(n==||n==||n==||n==||n==) return true;
if(n==||n%==||n%==||n%==||n%==||n%==) return false;
int div2=;
long long tn=n-;
while( !(tn%) )
{
div2++;
tn/=;
}
for(int tt=;tt<TIMES;tt++)
{
long long x=GetRandom(n-); //随机得到[1,n-1]
if(x==) continue;
x=Quk_Mul(x,tn,n);
long long pre=x;
for(int j=;j<div2;j++)
{
x = Mod_Mul(x, x, n);
if(x==&&pre!=&&pre!=n-) return false;
pre=x;
}
if(x!=) return false;
}
return true;
}

Miller-Rabin大素数测试模板的更多相关文章

  1. Miller Rabin 大素数测试

    PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率 ...

  2. Miller_Rabbin大素数测试

    伪素数: 如果存在和n互素的正整数a满足a^(n-1)≡1(mod n),则n是基于a的伪素数. 是伪素数但不是素数的个数是非常非常少的,所以如果一个数是伪素数,那么他几乎是素数. Miller_Ra ...

  3. 【算法编程】基于Miller-Rabin的大素数测试

    基本原理: 费尔马小定理:如果p是一个素数,且0<a<p,则a^(p-1)%p=1.        利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过计算d=a^(n-1)%n ...

  4. Miller Robin大素数判定

    Miller Robin算法 当要判断的数过大,以至于根n的算法不可行时,可以采用这种方法来判定素数. 用于判断大于2的奇数(2和偶数需要手动判断),是概率意义上的判定,因此需要做多次来减少出错概率. ...

  5. miller——rabin判断素数

    我们首先看这样一个很简单的问题:判定正整数\(n\)是否为素数 最简单的做法就是枚举\(2\)到\(n\)的所有数,看是否有数是\(n\)的因数,时间复杂度\(O(n)\) 稍微优化一下发现只要枚举\ ...

  6. 大素数测试的Miller-Rabin算法

    Miller-Rabin算法本质上是一种概率算法,存在误判的可能性,但是出错的概率非常小.出错的概率到底是多少,存在严格的理论推导. 一.费马小定理 假如p是质数,且gcd(a,p)=1,那么 a(p ...

  7. 大素数测试 求因子 poj 1811

    抄别人的 #include<stdio.h> #include<string.h> #include<algorithm> #include<stdlib.h ...

  8. luogu【模板】线性筛素数 (Miller-Rabin素数测试模板)

    这个感觉还是挺好理解的,就是复杂度证明看不懂~ Code: #include <cstdio> #include <algorithm> #include <cstrin ...

  9. 【模板】素数测试(Miller-Rabin测试)

    基础素数测试模板 对于大数的素性判断,目前Miller-Rabin算法应用最广泛.一般底数仍然是随机选取,但当待测数不太大时,选择测试底数就有一些技巧了.比如,如果 被测数小于4759123141,那 ...

随机推荐

  1. 在K8s中创建StatefulSet

    在K8s中创建StatefulSet 遇到的问题: 使用Deployment创建的Pod是无状态的,当挂在Volume之后,如果该Pod挂了,Replication Controller会再run一个 ...

  2. iOS:UICollectionView纯自定义的布局:堆叠式布局、圆式布局 (一般用来制作相册)

    集合视图的自动布局:UICollectionViewLayout是抽象根类,必须用它的子类才能创建实例,下面是重写的方法,计算item的布局属性 //每一次重新布局前,都会准备布局(苹果官方推荐使用该 ...

  3. python调用top命令获得CPU利用率

    1.python调用top命令获得CPU利用率 思路:通过python调用top命令获取cpu使用率 #python2代码 [root@zdops-server script]# cat cpu_lo ...

  4. ArcGIS Viewer for Flex中引入google map作底图 (转)

    在ArcGIS Viewer for Flex开发中,经常需要用到google map作为底图,我们不能通过ArcGIS Viewer for Flex - Application Builder轻易 ...

  5. Git历险记(一)

    [编者按]作为分布式版本控制系统的重要代表——Git已经为越来越多的人所认识,它相对于我们熟悉的CVS.SVN甚至同时分布式控制系统的 Mercurial,有哪些优势和不足呢.这次InfoQ中文站有幸 ...

  6. 【MySQL】谈谈PhxSQL的设计和实现哲学

    参考资料: http://mp.weixin.qq.com/s?__biz=MzI4NDMyNTU2Mw==&mid=2247483790&idx=1&sn=c925202df ...

  7. ES翻译之Function Score Query

    Function Score Query 原文链接 function_score允许你修改通过查询获取文档的分数,很有用处,score function是计算昂贵的,以及在过滤一系列文档上计算分数是高 ...

  8. XP如何在桌面新建宽带连接的快捷方式

    1 打开控制面板,点击网络和Internet连接 2 如果存在宽带连接选项. 则点击左侧的网上邻居,然后点击查看网络连接 右击宽带连接,点击创建快捷方式,放到桌面,改一下快捷方式的名字即可.   3 ...

  9. Java 分支结构 - if...else/switch

    Java 分支结构 - if...else/switch 顺序结构只能顺序执行,不能进行判断和选择,因此需要分支结构. Java 有两种分支结构: if 语句 switch 语句 if 语句 一个 i ...

  10. Android 冷兵器 之 tools

    代码地址如下:http://www.demodashi.com/demo/12612.html 前言 Android开发在所难免的就是UI的预览和调整,一般情况下都是直接run看效果,或者是使用AS的 ...