【BZOJ3270】博物馆

Description

有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆。这座博物馆有着特别的样式。它包含由m条走廊连接的n间房间,并且满足可以从任何一间房间到任何一间别的房间。
两个人在博物馆里逛了一会儿后两人决定分头行动,去看各自感兴趣的艺术品。他们约定在下午六点到一间房间会合。然而他们忘记了一件重要的事:他们并没有选好在哪儿碰面。等时间到六点,他们开始在博物馆里到处乱跑来找到对方(他们没法给对方打电话因为电话漫游费是很贵的)
不过,尽管他们到处乱跑,但他们还没有看完足够的艺术品,因此他们每个人采取如下的行动方法:每一分钟做决定往哪里走,有Pi 的概率在这分钟内不去其他地方(即呆在房间不动),有1-Pi 的概率他会在相邻的房间中等可能的选择一间并沿着走廊过去。这里的i指的是当期所在房间的序号。在古代建造是一件花费非常大的事,因此每条走廊会连接两个不同的房间,并且任意两个房间至多被一条走廊连接。
两个男孩同时行动。由于走廊很暗,两人不可能在走廊碰面,不过他们可以从走廊的两个方向通行。(此外,两个男孩可以同时地穿过同一条走廊却不会相遇)两个男孩按照上述方法行动直到他们碰面为止。更进一步地说,当两个人在某个时刻选择前往同一间房间,那么他们就会在那个房间相遇。
两个男孩现在分别处在a,b两个房间,求两人在每间房间相遇的概率。

Input

第一行包含四个整数,n表示房间的个数;m表示走廊的数目;a,b (1 ≤ a, b ≤ n),表示两个男孩的初始位置。
之后m行每行包含两个整数,表示走廊所连接的两个房间。
之后n行每行一个至多精确到小数点后四位的实数 表示待在每间房间的概率。
题目保证每个房间都可以由其他任何房间通过走廊走到。

Output

输出一行包含n个由空格分隔的数字,注意最后一个数字后也有空格,第i个数字代表两个人在第i间房间碰面的概率(输出保留6位小数)
注意最后一个数字后面也有一个空格

Sample Input

2 1 1 2
1 2
0.5
0.5

Sample Output

0.500000 0.500000

HINT

对于100%的数据有 n <= 20,n-1 <= m <= n(n-1)/2

题解:做过了1778再做这题岂不就是老套路啦~

发现点数很少,并且有两个人,自然想到将点拆成n2个,然后就可以构造出转移矩阵,然后ans[I-T]=S。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#define P(A,B) ((A-1)*n+B)
using namespace std;
int n,m,tot,cnt,A,B;
int to[1000],next[1000],head[1000],d[30];
double v[500][500],p[30],ans[500];
void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&A,&B);
tot=n*n;
memset(head,-1,sizeof(head));
int a,b,i,j,k,l;
for(i=1;i<=m;i++) scanf("%d%d",&a,&b),add(a,b),add(b,a),d[a]++,d[b]++;
for(i=1;i<=n;i++) scanf("%lf",&p[i]);
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(i==j) continue;
for(k=head[i];k!=-1;k=next[k])
{
for(l=head[j];l!=-1;l=next[l]) v[P(to[k],to[l])][P(i,j)]-=(1-p[i])*(1-p[j])/d[i]/d[j];
v[P(to[k],j)][P(i,j)]-=(1-p[i])*p[j]/d[i];
}
for(l=head[j];l!=-1;l=next[l]) v[P(i,to[l])][P(i,j)]-=p[i]*(1-p[j])/d[j];
v[P(i,j)][P(i,j)]-=p[i]*p[j];
}
}
for(i=1;i<=tot;i++) v[i][i]+=1.0;
v[P(A,B)][tot+1]=1;
for(i=1;i<=tot;i++)
{
for(j=i;j<=tot;j++) if(fabs(v[j][i])>fabs(v[i][i])) for(k=i;k<=tot+1;k++) swap(v[j][k],v[i][k]);
for(j=i+1;j<=tot;j++) if(i!=j)
{
double t=v[j][i]/v[i][i];
for(k=i;k<=tot+1;k++) v[j][k]-=t*v[i][k];
}
}
for(i=tot;i;i--)
{
for(j=i+1;j<=tot;j++) v[i][tot+1]-=v[i][j]*ans[j];
ans[i]=v[i][tot+1]/v[i][i];
}
for(i=1;i<n;i++) printf("%.6lf ",ans[P(i,i)]);
printf("%.6lf",ans[P(n,n)]);
return 0;
}

【BZOJ3270】博物馆 期望DP+高斯消元的更多相关文章

  1. BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元

    BZOJ_3143_[Hnoi2013]游走_期望DP+高斯消元 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机 ...

  2. BZOJ 3270: 博物馆 [概率DP 高斯消元]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...

  3. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

  4. hdu4418 Time travel 【期望dp + 高斯消元】

    题目链接 BZOJ4418 题解 题意:从一个序列上某一点开始沿一个方向走,走到头返回,每次走的步长各有概率,问走到一点的期望步数,或者无解 我们先将序列倍长形成循环序列,\(n = (N - 1) ...

  5. 【noi2019集训题1】 脑部进食 期望dp+高斯消元

    题目大意:有n个点,m条有向边,每条边上有一个小写字母. 有一个人从1号点开始在这个图上随机游走,游走过程中他会按顺序记录下走过的边上的字符. 如果在某个时刻,他记录下的字符串中,存在一个子序列和S2 ...

  6. LightOJ 1151 Snakes and Ladders 期望dp+高斯消元

    题目传送门 题目大意:10*10的地图,不过可以直接看成1*100的,从1出发,要到达100,每次走的步数用一个大小为6的骰子决定.地图上有很多个通道 A可以直接到B,不过A和B大小不确定   而且 ...

  7. P4457-[BJOI2018]治疗之雨【期望dp,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/P4457 题目大意 开始一个人最大生命值为\(n\),剩余\(hp\)点生命,然后每个时刻如果生命值没有满那么有\( ...

  8. ZJUT 1423 地下迷宫(期望DP&高斯消元)

    地下迷宫 Time Limit:1000MS  Memory Limit:32768K Description: 由于山体滑坡,DK被困在了地下蜘蛛王国迷宫.为了抢在DH之前来到TFT,DK必须尽快走 ...

  9. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

随机推荐

  1. leetcode 题解:Merge Sorted Array(两个已排序数组归并)

    题目: Given two sorted integer arrays A and B, merge B into A as one sorted array. Note:You may assume ...

  2. [ElasticSearch]Java API 之 词条查询(Term Level Query)

    1. 词条查询(Term Query)  词条查询是ElasticSearch的一个简单查询.它仅匹配在给定字段中含有该词条的文档,而且是确切的.未经分析的词条.term 查询 会查找我们设定的准确值 ...

  3. [Angular] Dynamic component rendering by using *ngComponentOutlet

    Let's say you want to rending some component based on condition, for example a Tabs component. Insid ...

  4. 使用Fiddler作为简单的mockserver

    转载:  http://blog.csdn.net/xt0916020331/article/details/66544526 开发中经常遇到调试过程中对接系统接口无法联调或者后台未开发完成等情况.这 ...

  5. 在HTML页面中实现一个简单的Tab

    参考:http://blog.sina.com.cn/s/blog_6cccb1630100m23i.html HTML页面代码如下: <!DOCTYPE html PUBLIC "- ...

  6. python——Container之字典(dict)详解

    字典(dictionary)是除列表以外python之中最灵活的内置数据结构类型.列表是有序的对象结合,字典是无序的对象集合.两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取. ...

  7. 使用ByteRef加速String类型DocValues的载入

    眼下商户索引DocValues很大,warmup时花费70-80秒(在beta环境),有62秒在载入DocValues,发现当中有54秒时间在载入string docvalues,string doc ...

  8. 【BIEE】由于排序顺序不兼容,集合操作失败

    问题描述 使用BIEE数据透视表时,使用了UNION进行数据组合,但是在浏览结果时意外出错了,报错如下截图: 问题分析 原因暂时未知 问题解决 目前使用UNION进行聚合,只需要将UNION修改为UN ...

  9. discuz !NT 3.5 论坛整合 .net 网站用户登录,退出

    using System.Web; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.HtmlCont ...

  10. HttpClient简介

    栏目:Web开发 作者:admin 日期:2015-05-02 评论:0 点击: 204 次   虽然在JDK的java net包中已经提供了访问 HTTP 协议的基本功能,但是对于大部分应用程序来说 ...