shu7-19【背包和母函数练习】
题目:http://acm.hdu.edu.cn/diy/contest_show.php?cid=20083
密码:shuacm
感觉他们学校的新生训练出的比较好。
今天很多题目都是强化了背包的转化。
关于背包转化成求最优解见分析:点击打开链接
贴个背包的模板:
//0-1背包, 代价为 cost, 获得的价值为 weight
// 每种物品最多只可以选一次
void ZeroOnePack(int cost, int weight)
{
for(int i = nValue; i >= cost; i--)
dp[i] = dp[i] + dp[i-cost]+weight;
} // 完全背包,代价为 cost, 获得的价值为 weight
// 每种物品可以选无限次, 或者在可选的有限次内能够装满背包
void CompletePack(int cost, int weight)
{
for(int i = cost; i <= nValue; i++)
dp[i] = dp[i] + dp[i-cost]+weight;
} //多重背包
//每种物品可以选有限次
void MultiplePack(int cost, int weight, int amount)
{
if(cost*amount >= nValue) CompletePack(cost, weight); else
{
int k = 1;
while(k < amount)
{
ZeroOnePack(k*cost, k*weight);
amount -= k;
k <<= 1;
}
ZeroOnePack(amount*cost, amount*weight);
}
}
关于转化后,除掉 weight,把 max 换成 sum 即可,具体分析见上面的博客
void ZeroOnePack(int cost)
{
for(int i = nValue; i >= cost; i--)
dp[i] = dp[i] + dp[i-cost];
} void CompletePack(int cost)
{
for(int i = cost; i <= nValue; i++)
dp[i] = dp[i] + dp[i-cost];
} void MultiplePack(int cost, int amount)
{
if(cost*amount >= nValue) CompletePack(cost); else
{
int k = 1;
while(k < amount)
{
ZeroOnePack(k*cost);
amount -= k;
k <<= 1;
}
ZeroOnePack(amount*cost);
}
}
A
和上面分析博客一样有木有
Problem A
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 40 Accepted Submission(s) : 32
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
Input
Output
Sample Input
4
10
20
Sample Output
5
42
627
#include<stdio.h>
#include<string.h> const int maxn = 150;
int dp[maxn]; int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
memset(dp,0,sizeof(dp));
dp[0] = 1;
for(int i = 1; i <= n; i++)
for(int j = i; j <= n; j++)
dp[j] += dp[j-i];
printf("%d\n", dp[n]); }
return 0;
}
B:母函数,待看中
为毛背包连样例 都 没有 出。。。感觉和 F 一样啊
Problem B
Time Limit : 1000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 23 Accepted Submission(s) : 18
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
Input
每组数据的第一行是两个整数n(1 <= n <= 40),k(1 <= k <= 8)。
接着有k行,每行有两个整数a(1 <= a <= 8),b(1 <= b <= 10),表示学分为a的课有b门。
Output
Sample Input
2
2 2
1 2
2 1
40 8
1 1
2 2
3 2
4 2
5 8
6 9
7 6
8 8
Sample Output
2
445
直接套用母函数模板,背包还是没有想出来。。。没道理啊
#include<stdio.h>
#include<string.h> const int maxn = 1000000;
int c1[maxn];
int c2[maxn]; int a[10];
int b[10]; int main()
{
int T;
int n,k;
scanf("%d", &T);
while(T--)
{
memset(c1, 0, sizeof(c1));
memset(c2, 0, sizeof(c2));
c1[0] = 1;
scanf("%d%d", &n,&k);
for(int i = 1; i <= k; i++)
{
scanf("%d%d", &a[i],&b[i]);
} for(int i = 1; i <= k; i++) //有几种学分, 第几层括号
{
for(int j = 0; j <= n; j++) //在原有的基础上遍历
{
for(int t = 0; t+j <= n && t <= a[i]*b[i]; t += a[i]) //遍历第 i 层括号的每一项
{//每种学分选的次数有限制,所以同时 k 也不能超过当前总的
c2[t+j] += c1[j];
}
} for(int j = 0; j <= n; j++)
{
c1[j] = c2[j];
c2[j] = 0;
}
}
printf("%d\n", c1[n]);
}
return 0;
}
C :背包总容量改为总价值的一半,尽量装满背包。所求的最大体积则是第二个答案
第一个答案 = 总价值-第一个答案
注意:<= 0非法输入,跳出。而不是 n == -1 退出。
Problem C
Time Limit : 10000/5000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 39 Accepted Submission(s) : 11
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
The splitting is absolutely a big event in HDU! At the same time, it is a trouble thing too. All facilities must go halves. First, all facilities are assessed, and two facilities are thought to be same if they have the same value. It is assumed that there is
N (0<N<1000) kinds of facilities (different value, different kinds).
Input
facilities) each. You can assume that all V are different.
A test case starting with a negative integer terminates input and this test case is not to be processed.
Output
Sample Input
2
10 1
20 1
3
10 1
20 2
30 1
-1
Sample Output
20 10
40 40
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std; const int maxn = 50*50*100+10;
int dp[maxn];
int nValue; int v[60];
int m[60]; void ZeroOnePack(int cost)
{
for(int i = nValue; i >= cost; i--)
dp[i] = dp[i] + dp[i-cost];
} void CompletePack(int cost)
{
for(int i = cost; i <= nValue; i++)
dp[i] = dp[i] + dp[i-cost];
} void MultiplePack(int cost, int amount)
{
if(cost*amount >= nValue) CompletePack(cost); else
{
int k = 1;
while(k < amount)
{
ZeroOnePack(k*cost);
amount -= k;
k <<= 1;
}
ZeroOnePack(amount*cost);
}
} int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
if(n <= 0) break;
int sum = 0; for(int i = 0; i < n; i++)
{
scanf("%d%d", &v[i], &m[i]);
sum += v[i]*m[i];
}
nValue = sum/2; memset(dp,0,sizeof(dp));
dp[0] = 1; for(int i = 0; i < n; i++)
{
MultiplePack(v[i], m[i]);
} int ans1, ans2;
for(int i = nValue; i >= 0 ; i--)
{
if(dp[i] != 0)
{
ans2 = i;
break;
}
}
ans1 = sum-ans2;
printf("%d %d\n", ans1, ans2);
} return 0;
}
D:完全背包
Problem D
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 25 Accepted Submission(s) : 20
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
available in Silverland.
There are four combinations of coins to pay ten credits:
ten 1-credit coins,
one 4-credit coin and six 1-credit coins,
two 4-credit coins and two 1-credit coins, and
one 9-credit coin and one 1-credit coin.
Your mission is to count the number of ways to pay a given amount using coins of Silverland.
Input
Output
Sample Input
2
10
30
0
Sample Output
1
4
27
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; int dp[310];
int a[20];
int nValue; void CompletePack(int cost)
{
for(int i = cost; i <= nValue; i++)
dp[i] = dp[i] + dp[i-cost];
} int main()
{
while(scanf("%d", &nValue) != EOF)
{
if(nValue == 0) break;
for(int i = 1; i <= 17; i++)
a[i] = i*i;
memset(dp,0,sizeof(dp));
dp[0] = 1; for(int i = 1; i <= 17; i++)
CompletePack(a[i]);
printf("%d\n", dp[nValue]);
}
}
E:不会
Problem E
Time Limit : 30000/15000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 4 Accepted Submission(s) : 1
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
select some stones and arrange them in line to form a beautiful pattern. After several arrangements he finds it very hard for him to enumerate all the patterns. So he asks you to write a program to count the number of different possible patterns. Two patterns
are considered different, if and only if they have different number of stones or have different colors on at least one position.
Input
available stones of each color respectively. All the input numbers will be nonnegative and no more than 100.
Output
which is a prime number.
Sample Input
3
1 1 1
2
1 2
Sample Output
Case 1: 15
Case 2: 8
Hint
BGM; BMG; GBM; GMB; MBG; MGB.
F:多重背包求解
Problem F
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 79 Accepted Submission(s) : 23
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
“Oh, God! How terrible! ”

Don’t be so afraid, guys. Although he hides in a cave of Hang Zhou, he dares not to go out. Laden is so bored recent years that he fling himself into some math problems, and he said that if anyone can solve his problem, he will give himself up!
Ha-ha! Obviously, Laden is too proud of his intelligence! But, what is his problem?
“Given some Chinese Coins (硬币) (three kinds-- 1, 2, 5), and their number is num_1, num_2 and num_5 respectively, please output the minimum value that you cannot pay with given coins.”
You, super ACMer, should solve the problem easily, and don’t forget to take $25000000 from Bush!
Input
Output
Sample Input
1 1 3
0 0 0
Sample Output
4
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int maxn = 8000+10;
int dp[maxn];
int nValue; void ZeroOnePack(int cost)
{
for(int i = nValue; i >= cost; i--)
dp[i] = dp[i] + dp[i-cost];
} void CompletePack(int cost)
{
for(int i = cost; i <= nValue; i++)
dp[i] = dp[i] + dp[i-cost];
} void MultiplePack(int cost, int amount)
{
if(cost*amount >= nValue) CompletePack(cost); else
{
int k = 1;
while(k < amount)
{
ZeroOnePack(k*cost);
amount -= k;
k <<= 1;
}
ZeroOnePack(amount*cost);
}
} int main()
{
int a,b,c;
while(scanf("%d%d%d", &a,&b,&c) != EOF)
{
if(a == 0 && b == 0 && c == 0) break; memset(dp,0,sizeof(dp));
dp[0] = 1;
nValue = 1*a+2*b+5*c; MultiplePack(1, a);
MultiplePack(2, b);
MultiplePack(5, c); for(int i = 0; i < maxn; i++)
{
if(dp[i] == 0)
{
printf("%d\n", i);
break;
}
}
}
return 0;
}
G:签到。。。
Problem G
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 45 Accepted Submission(s) : 40
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
什么问题?他研究的问题是蟠桃一共有多少个!
不过,到最后,他还是没能解决这个难题,呵呵^-^
当时的情况是这样的:
第一天悟空吃掉桃子总数一半多一个,第二天又将剩下的桃子吃掉一半多一个,以后每天吃掉前一天剩下的一半多一个,到第n天准备吃的时候只剩下一个桃子。聪明的你,请帮悟空算一下,他第一天开始吃的时候桃子一共有多少个呢?
Input
Output
Sample Input
2
4
Sample Output
4
22
#include<stdio.h> int main()
{
int n;
while(scanf("%d", &n) != EOF)
{
int ans = 1;
while(--n)
{
ans = (ans+1)*2;
}
printf("%d\n", ans);
}
return 0;
}
shu7-19【背包和母函数练习】的更多相关文章
- Big Event in HDU(HDU1171)可用背包和母函数求解
Big Event in HDU HDU1171 就是求一个简单的背包: 题意:就是给出一系列数,求把他们尽可能分成均匀的两堆 如:2 10 1 20 1 结果是:20 10.才最均匀! 三 ...
- 钱币兑换问题_完全背包&&拆分&&母函数
ps:原来用新浪,可是代码的排版不是很好,所以用博客园啦,先容许我把从八月份开始的代码搬过来,从这里重新出发,希望这里可以一直见证我的成长. Time Limit: 2000/1000 MS (Jav ...
- 2079 ACM 选课时间 背包 或 母函数
题目:http://acm.hdu.edu.cn/showproblem.php?pid=2079 题意:同样的学分 ,有多少种组合数,注意同样学分,课程没有区别 思路:两种方法 背包 母函数 背包: ...
- HDU 1059 Dividing 分配(多重背包,母函数)
题意: 两个人共同收藏了一些石头,现在要分道扬镳,得分资产了,石头具有不同的收藏价值,分别为1.2.3.4.5.6共6个价钱.问:是否能公平分配? 输入: 每行为一个测试例子,每行包括6个数字,分别对 ...
- hdu 1171 Big Event in HDU (01背包, 母函数)
Big Event in HDU Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1171 (背包或者母函数问题)
Problem Description Nowadays, we all know that Computer College is the biggest department in HDU. Bu ...
- Holding Bin-Laden Captive!(1.多重背包 2.母函数)
Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/ ...
- hdu 1028 Ignatius and the Princess III(母函数)
题意: N=a[1]+a[2]+a[3]+...+a[m]; a[i]>0,1<=m<=N; 例如: 4 = 4; 4 = 3 + 1; 4 = 2 + 2; 4 = 2 + ...
- HDU 1284(钱币兑换 背包/母函数)
与 HDU 1028 相似的题目. 方法一:完全背包. 限制条件:硬币总值不超过 n. 目标:求出组合种数. 令 dp[ i ][ j ] == x 表示用前 i 种硬币组合价值为 j 的钱共 x 种 ...
随机推荐
- RESTful接口签名认证实现机制
RESTful接口 互联网发展至今,催生出了很多丰富多彩的应用,极大地调动了人们对这些应用的使用热情.但同时也为互联网应用带来了严峻的考验.具体体现在以下几个方面: 1. 部署方式的改变:当用 ...
- ElasticSearch refresh API
在 Elasticsearch 中,写入和打开一个新段的轻量的过程叫做 refresh . 默认情况下每个分片会每秒自动刷新一次.这就是为什么我们说 Elasticsearch 是 近 实时搜索: 文 ...
- ios开发中APP底部上滑不能调出如WiFi、蓝牙、播放等的设置页面的解决的方法
在开发的APP中我们通常通过手动底部上滑来调出WiFi.蓝牙.飞行模式等的设置页面.有时我们开发的APP无法调出. 解决的方法: 进入iPhone "设置" --> &quo ...
- Json序列化为对象方法
/// <summary>/// json 序列化为对象/// </summary>/// <typeparam name="T">对象类型&l ...
- Quaternion 四元数
Quaternions are used to represent rotations. 四元数用于表示旋转. They are compact, don't suffer from gimbal l ...
- Linux——Django 开发环境部署(一)
Django 开发环境部署(一) 之所以 写这篇文章的原因在于django环境的确轻松搭建,之前Ubuntu上安装了,的确很轻松,但是后期我才知道随便做个环境出来很容易到了后面很麻烦,污 染了系统里的 ...
- mkdir的参数-p的作用
mkdir -p /nfs 也就是加上-p参数,之前只知道是递归创建目录,于是就发问了,得到的答案是: -p, --parents no error if existing, ...
- MySql 删除相同前缀的表名
SELECT CONCAT('drop table ', table_name, ';') FROM information_schema.tables WHERE table_name LIKE ' ...
- JDBC编程理论知识(1)
1.SUN公司为统一对数据库的操作,定义了一套Java操作数据库的规范,称之为JDBC 2.JDBC全称为:Java Data Base Connectivity(java数据库连接),它主要由接口组 ...
- python常见面试题(一)
1.Python是如何进行内存管理的? 答:从三个方面来说,一对象的引用计数机制,二垃圾回收机制,三内存池机制 一.对象的引用计数机制 Python内部使用引用计数,来保持追踪内存中的对象,所有对象都 ...