斐波那契数列(递归)&求100以内的素数
Java
5
添加了
java.util.Scanner
类,这是一个用于扫描输入文本的新的实用程序。它是以
前的
StringTokenizer
和
Matcher
类之间的某种结合。由于任何数据都必须通过同一模式的
捕获组检索或通过使用一个索引来检索文本的各个部分。于是可以结合使用正则表达式和从
输入流中检索特定类型数据项的方法。这样,除了能使用正则表达式之外,
Scann输入流中检索特定类型数据项的方法。这样,除了能使用正则表达式之外,
1.斐波那契数列
Java中Scanner类这是一个用于扫描输入文本的
可以使用该类创建一个对象
Scanner reader=new Scanner(System.in);
然后reader调用下面的方法,读取用户在命令行输入的各种类型的数据
package mianshiti;
import java.util.*;
import java.io.*;
public class fibonacci {
public static int k=0;
public static void main(String[] args) {
Scanner cin=new Scanner(System.in);//Scanner类这是一个用于扫描输入文本的
long a=cin.nextLong();//将输入信息的下一个标记扫描为一个long
System.out.println(fibonacci(a));
System.out.println("共调用了"+k+"次");
}
public static long fibonacci(long m){
if(m==0|m==1){
k++;
return m;
}else{
return fibonacci(m-1)+fibonacci(m-2);
}
} }
递归的缺点:
会造成调用栈的溢出,因为需要为每一次函数调用在内存栈中分配空间,而每个进程的栈的容量是有限的。当递归调用层级太多时,就会超出栈的容量,从而导致调用栈溢出。
更简洁的方法:
可以直接从下往上算,首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3),依次类推可以算出第n项f(n),时间复杂度是O(n)
public class Solution {
public int Fibonacci(int n) {
if(n==0){
return 0;
}
if(n==1){
return 1;
}
int numfn1=0;
int numfn2=1;
int currentfn=0;
for(int i=2;i<=n;i++){
currentfn=numfn1+numfn2;
numfn1=numfn2;
numfn2=currentfn;
}
return currentfn;
}
}
跳台阶:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路:当前台阶的跳法总数=当前台阶后退一阶的台阶的跳法总数+当前台阶后退二阶的台阶的跳法总数
public class Solution {
public int JumpFloor(int target) {
if(target==2||target==1){
return target;
}
// 第一阶和第二阶考虑过了,初始当前台阶为第三阶,向后迭代
// 思路:当前台阶的跳法总数=当前台阶后退一阶的台阶的跳法总数+当前台阶后退二阶的台阶的跳法总数
int jumpSum=0;//当前台阶的跳法总数
int jumpSumBackStep1=2;//当前台阶后退一阶的台阶的跳法总数
int jumpSumBackStep2=1;//当前台阶后退二阶的台阶的跳法总数
for(int i=3;i<=target;i++){
jumpSum=jumpSumBackStep1+jumpSumBackStep2;
jumpSumBackStep2=jumpSumBackStep1;// 后退一阶在下一次迭代变为后退两阶
jumpSumBackStep1=jumpSum;// 当前台阶在下一次迭代变为后退一阶
}
return jumpSum;
}
}
矩形覆盖
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

| √ | |||||||
| √ |
| √ | √ | ||||||
| × | × |
public class Solution {
public int RectCover(int target) {
if (target < 1) {
return 0;
} else if (target == 1 || target == 2) {
return target;
} else {
return RectCover(target-1) + RectCover(target-2);
}
}
}
2.求100以内的素数
素数,是指在大于1的自然数中,除了1和它本身以外,不能被其他数整除的数。
合数,比1大但不是素数的。
1和0既非素数也非合数
如:2,3,5,7....
package mianshiti;
public class primenumber {
public static void main(String[] args) {
int n=0;//用来计算当前是第几个素数
for(int i=2;i<=100;i++){
if(isPrime(i)){
n++;
System.out.print(i+"\t");
if(n%10==0){//每10个数,换一次行
System.out.print("\n");
}
}
}
}
static boolean isPrime(int number){
for(int i=2;i<=Math.sqrt(number);i++){//用一个数除以其他数,只要除到这个数的根号Math.sqrt(number)就可以判断是否素数
if(number%i==0){
return false;
}
}
return true;
}
}
斐波那契数列(递归)&求100以内的素数的更多相关文章
- PHP算法之斐波那契数列(递归)
/*斐波那契数列 源代码分析 f(x) = 1 ; 当 x < 2 ; f(x) = f(x-1)+f(x-2); 当 x >= 2 ; 通项式为:fn ={((1+根号5)/2)^n-( ...
- python之斐波那契数列递归推导在性能方面的反思
在各种语言中,谈到递归首当其冲的是斐波那契数列,太典型了,简直就是标杆 一开始本人在学习递归也是如此,因为太符合逻辑了 后台在工作和学习中,不断反思递归真的就好嘛? 首先递归需要从后往前推导,所有数据 ...
- DP思想在斐波那契数列递归求解中的应用
斐波那契数列:1, 1, 2, 3, 5, 8, 13,...,即 f(n) = f(n-1) + f(n-2). 求第n个数的值. 方法一:迭代 public static int iterativ ...
- Reverse反转算法+斐波那契数列递归+Reverse反转单链表算法--C++实现
Reverse反转算法 #include <iostream> using namespace std; //交换的函数 void replaced(int &a,int & ...
- java递归 斐波那契数列递归与非递归实现
递归简单来说就是自己调用自己, 递归构造包括两个部分: 1.定义递归头:什么时候需要调用自身方法,如果没有头,将陷入死循环 2.递归体:调用自身方法干什么 递归是自己调用自己的方法,用条件来判断调用什 ...
- [剑指offer] 7. 斐波那契数列 (递归 时间复杂度)
简介: 杨辉三角每条斜线上的数之和就构成斐波那契数列. 思路: 参考文章:https://mp.weixin.qq.com/s?src=11×tamp=1551321876& ...
- 斐波那契数列 递归 尾递归 递推 C++实现
==================================声明================================== 本文原创,转载请注明作者和出处,并保证文章的完整性(包括本 ...
- [python]兔子问题,斐波那契数列 递归&非递归
假设一对幼年兔子需要一个月长成成年兔子,一对成年兔子一个月后每个月都可以繁衍出一对新的幼年兔子(即兔子诞生两个月后开始繁殖).不考虑死亡的情况,问第 N 个月时共有多少对兔子? 结果前几个月的兔子数量 ...
- 求前n项的斐波那契数列、求两个数的最小公倍数、求两个数的最大公约数
class Fib(object): def __call__(self,n): a=[0,1] for i in range(n-2): an ...
- 剑指offer-矩形覆盖-斐波那契数列(递归,递推)
class Solution { public: int rectCover(int number) { if(number==0 || number==1||number==2) return nu ...
随机推荐
- centreon-engine 性能调优
http://documentation.centreon.com/docs/centreon-engine/en/latest/user/configuration/best_practice.ht ...
- MongoDB 安装笔记
一.MongoDB的安装 1.在MongoDB的官网下载对应的安装文件() 2.解压安装文件 #解压tgz文件 tar -zxvf mongodb-linux-x86_64-ubuntu1604-3. ...
- leetcode: 数组
1. longest-consecutive-sequence Given an unsorted array of integers, find the length of the longest ...
- 好的学习网站和app推荐
1 W3cschool: http://www.w3school.com.cn/ 菜鸟教程: http://www.runoob.com/ 2 视频学习网站和app:网易云课堂.腾讯课堂.慕课网(h ...
- ZOJ - 2112 Dynamic Rankings(BIT套主席树)
纠结了好久的一道题,以前是用线段树套平衡树二分做的,感觉时间复杂度和分块差不多了... 终于用BIT套函数式线段树了过了,120ms就是快,此题主要是卡内存. 假设离散后有ns个不同的值,递归层数是l ...
- 2017.9.24 JSP动态页面
1.1 JSP(Java Server Page)是一种运行在服务器端的脚本语言,用来开发动态网页的开发技术. 1.2 JSP页面的结构 JSP页面主要由HTML和JSP代码构成,JSP代码是通过&q ...
- Redis 命令学习
每天不学习点新的东西,感觉就有点会被社会淘汰掉了.也许现在学习的知识会很快忘记,下次学习用到这个知识点的时候,再回来翻记录的笔记,我想这样会比从头再学,效率会高点吧. 闲话不多聊,回归正题.今天学习r ...
- React后端管理系统-商品详情detail组件
import React from 'react'; import MUtil from 'util/mm.jsx' import Product from 'service/product-serv ...
- Python的静态方法和类方法
Python中使用@staticmethod这个装饰器让方法变为静态方法 一:定义 @staticmethod: 首先它是一个装饰器,被装饰的方法不需要隐含的参数,对象和对象的实例都可以调用静态方法 ...
- scrapy--Beautyleg
很早就开始关注:Beautyleg 高清丝袜美腿.关注之后开始觉得打开了新世界的大门,如果有相同观点的,那么你很有品味.说真的,学习爬虫的动力之一就是想把里面的图片爬取下来.哈哈哈!!! 给大家放点爬 ...