扩展欧几里得算法

  求逆元就不说了。

  ax+by=c

  这个怎么求,很好推。

  设d=gcd(a,b) 满足d|c方程有解,否则无解。

  扩展欧几里得求出来的解是 x是 ax+by=gcd(a,b)的解。

  对于c的话只需要x*c/gcd(a,b)%(b/d)即可,因为b/d的剩余系更小。

  为什么这样呢?

  设a'=a/d,b'=b/d 求出a'x+b'y=1的解,两边同时乘d,然后x也是ax+by=d的解,

  然后因为b'的剩余系更小,所以%b’

中国剩余定理是合并线性方程组的

中国余数定理

  转化为一个线性方程 ax+by=c

   a,b

   c,d

   num % a=b;

   num % c=d;

   求num最小正整数解;

   num=ax+b=cy+d

   ax-cy=d-b

   可以化为求解 ax≡(d-b)(mod c);

   ax+cy=d-b

   用ex_gcd求解出x;

   num=a*x+b;

   这样num mod a=b

   num mod c=d-b+b=d

   因为x为最小正整数解,所以num为最小解

   满足的集合为{x|x=num+k·[a,b],(k∈Z)}

   然后转化为%lcm(a,c)=num

   然后继续合并

附上代码,完美代码

 #include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
typedef long long ll;
using namespace std;
ll ex_gcd(ll a,ll b,ll &x,ll &y)
{
if (!b)
{
x=,y=;
return a;
}
ll fzy=ex_gcd(b,a%b,x,y);
ll t=x;
x=y;y=t-a/b*y;
return fzy;
}
int main()
{
int t;
ll z1,z2,z3,z4;
while (cin>>t)
{
bool flag=;
scanf("%lld%lld",&z1,&z2);
for (int i=;i<t;i++)
{
scanf("%lld%lld",&z3,&z4);
if (flag) continue;
ll a=z1,b=z3,c=z4-z2;
ll x,y;
ll d=ex_gcd(a,b,x,y);
if (c%d!=)
{
flag=;
continue;
}
ll t=b/d;
x=(x*(c/d)%t+t)%t;//t的剩余系更小。
z2=z1*x+z2;//得出num
z1=z1*(z3/d);
cout<<"z1="<<z1<<" z2="<<z2<<endl;
}
if (flag==) cout<<-<<endl;
else cout<<z2<<endl;
}
}

扩展欧几里得(ex_gcd),中国剩余定理(CRT)讲解 有代码的更多相关文章

  1. hdu1573-X问题-(扩展欧几里得定理+中国剩余定理)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. hdu3579-Hello Kiki-(扩展欧几里得定理+中国剩余定理)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. POJ2115 - C Looooops(扩展欧几里得)

    题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...

  4. poj2115 C Looooops——扩展欧几里得

    题目:http://poj.org/problem?id=2115 就是扩展欧几里得呗: 然而忘记除公约数... 代码如下: #include<iostream> #include< ...

  5. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  6. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  7. gcd,扩展欧几里得,中国剩余定理

    1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题: ...

  8. C Looooops(扩展欧几里得+模线性方程)

    http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...

  9. 中国剩余定理(CRT)及其扩展(EXCRT)详解

    问题背景   孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...

随机推荐

  1. linux命令讲解

    1.vi命令 1.光标移动到文件的最后一行 G     :$     ]] 2.光标移动到文件的第一行 :0     gg     [[ 3.从光标所在位置将光标移动到当前行的开头 0     ^   ...

  2. scrapy--Beautyleg

    很早就开始关注:Beautyleg 高清丝袜美腿.关注之后开始觉得打开了新世界的大门,如果有相同观点的,那么你很有品味.说真的,学习爬虫的动力之一就是想把里面的图片爬取下来.哈哈哈!!! 给大家放点爬 ...

  3. 一个简单的WPF MVVM实例【转载】

    引用地址:http://blog.csdn.net/yl2isoft/article/details/20838149 1 新建WPF 应用程序WPFMVVMExample 程序结构如下图所示. 2  ...

  4. OC中的block作方法参数时的用法

    方式一.在传参时直接声明block回调方法. 1. 定义方法: - (int)doTest:(NSString *)name success:(int (^)(int param1, int para ...

  5. 初见akka-02:rpc框架

    1.RPC:简单点说,就是多线程之间的通信,我们今天用了scala以及akka 来简单的实现了 rpc框架的一些简单的内容,一脸包括了,心跳,间隔时间, 注册以及一些问题, 模式匹配的一些东西,虽然比 ...

  6. Dragger 2遇到的坑 Dragger2详解 Dragger2学习最好的资料

    我是曹新雨,我为自己代言.现在的菜鸟,3年以后我就是大神.为自己加油.微信:aycaoxinyu Dragger2是什么,我就不再说了.资料一堆,而且里面的注解什么意思,我推荐两篇文章,这两篇都是我精 ...

  7. shell编程——参数传递

    1.Linux Shell参数引用 $0 这个程式的执行名字$n 这个程式的第n个参数值,n=1..9$* 这个程式的所有参数$# 这个程式的参数个数$$ 这个程式的PID$! 执行上一个背景指令的P ...

  8. python考点

    Python考点 1.Python类继承,内存管理(阿里) 答:内存管理机制包括:引用计数机制,垃圾回收机制,内存池机制 a = 1,1就是对象,a就是引用,引用a指向对象1. 2.Python装饰器 ...

  9. 剑指Offer - 九度1356 - 孩子们的游戏(圆圈中最后剩下的数)

    剑指Offer - 九度1356 - 孩子们的游戏(圆圈中最后剩下的数)2014-02-05 19:37 题目描述: 每年六一儿童节,JOBDU都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.H ...

  10. 剑指Offer - 九度1505 - 两个链表的第一个公共结点

    剑指Offer - 九度1505 - 两个链表的第一个公共结点2013-11-24 20:09 题目描述: 输入两个链表,找出它们的第一个公共结点. 输入: 输入可能包含多个测试样例.对于每个测试案例 ...