【BZOJ2733】[HNOI2012] 永无乡(启发式合并Splay)
大致题意: 给你一张图,其中每个点有一个权值,有两种操作:在两点之间连一条边,询问一个点所在联通块第\(k\)小的权值。
平衡树
看到第\(k\)小,应该不难想到平衡树。
为了练习\(Splay\),所以我是用\(Splay\)来做这题的。
对于询问操作
对于询问操作,我们只要找到该节点所在\(Splay\)的根,然后查询第\(k\)小的权值即可,应该是\(Splay\)比较模板的操作吧。
因此就不多说了。
下面让我们来重点看一看连边操作。
对于连边操作
这才是真正恶心的操作。
考虑这条边连接的两个节点如果是在同一联通块,则完全不必考虑这条边。
但如果连接的是两个联通块,我们就需要合并这两个\(Splay\)。
至于如何合并,自然是启发式合并了。
而启发式合并的操作其实也非常简单,就是遍历较小的\(Splay\),然后把它里面的节点一个一个插入至较大的\(Splay\)中。
这样的时间复杂度看似极高,实际上均摊之后依然是可以接受的。
具体实现可以见代码。
代码
#include<bits/stdc++.h>
#define N 100000
#define M 300000
#define ull unsigned long long
#define swap(x,y) (x^=y^=x^=y)
using namespace std;
int n,m,a[N+5];
class FIO
{
private:
#define Fsize 100000
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,Fsize,stdin),A==B)?EOF:*A++)
#define pc(ch) (void)(FoutSize<Fsize?Fout[FoutSize++]=ch:(fwrite(Fout,1,FoutSize,stdout),Fout[(FoutSize=0)++]=ch))
int Top,FoutSize;char ch,*A,*B,Fin[Fsize],Fout[Fsize],Stack[Fsize];
public:
inline void read(int &x) {x=0;while(!isdigit(ch=tc()));while(x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));}
inline void read_alpha(char &x) {while(!isalpha(x=tc()));}
inline void writeln(int x) {if(!x) return pc('0'),pc('\n');if(x<0) pc('-'),x=-x;while(x) Stack[++Top]=x%10+48,x/=10;while(Top) pc(Stack[Top--]);pc('\n');}
inline void clear() {fwrite(Fout,1,FoutSize,stdout);}
}F;
class Class_splay//Splay模板
{
private:
#define PushUp(x) (node[x].Size=node[node[x].Son[0]].Size+node[node[x].Son[1]].Size+1)
#define Which(x) (node[node[x].Father].Son[1]==x)
#define Connect(x,y,d) (node[node[x].Father=y].Son[d]=x)
int rt,tot,data[N+5];
struct Tree
{
int Size,Father,Son[2];
inline void Clear() {Size=1,Father=Son[0]=Son[1]=0;}
}node[(N+M<<1)+5];
inline void Rotate(int x,int &k)
{
register int fa=node[x].Father,pa=node[fa].Father,d=Which(x);
(fa^k?node[pa].Son[Which(fa)]=x:k=x),node[x].Father=pa,Connect(node[x].Son[d^1],fa,d),Connect(fa,x,d^1),PushUp(fa),PushUp(x);
}
inline void Splay(int x,int &k) {for(register int fa=node[x].Father;x^k;Rotate(x,k),fa=node[x].Father) if(fa^k) Rotate(Which(x)^Which(fa)?x:fa,k);}
inline void Insert(int &x,int pos,int lst)
{
if(!x) return (void)(node[x=pos].Clear(),node[x].Father=lst);
Insert(node[x].Son[a[x]<a[pos]],pos,x),PushUp(x);
}
inline void dfs(int x,int rt)//遍历较小的Splay,将其节点一个个插入较大的Splay中
{
if(node[x].Son[0]) dfs(node[x].Son[0],rt);
if(node[x].Son[1]) dfs(node[x].Son[1],rt);
Insert(rt,x,0),Splay(x,rt);//插入
}
public:
inline void Init() {for(register int i=1;i<=n;++i) node[i].Size=1;}
inline void Union(int x,int y)//启发式合并x和y
{
while(node[x].Father) x=node[x].Father;//找到根节点
while(node[y].Father) y=node[y].Father;//找到根节点
if(!(x^y)) return;//如果在同一个联通块内就退出函数
if(node[x].Size<node[y].Size) swap(x,y);
dfs(y,x);
}
inline int get_val(int x,int rk)
{
while(node[x].Father) x=node[x].Father;
if(node[x].Size<rk) return -1;
while(x)
{
if(node[node[x].Son[0]].Size>=rk) x=node[x].Son[0];
else if(node[node[x].Son[0]].Size+1==rk) return x;
else rk-=node[node[x].Son[0]].Size+1,x=node[x].Son[1];
}
}
}splay;
int main()
{
register int i,Q,x,y;register char op;
for(F.read(n),F.read(m),i=1;i<=n;++i) F.read(a[i]);
for(splay.Init(),i=1;i<=m;++i) F.read(x),F.read(y),splay.Union(x,y);
for(F.read(Q);Q;--Q)
{
if(F.read_alpha(op),F.read(x),F.read(y),op^'Q') splay.Union(x,y);
else F.writeln(splay.get_val(x,y));
}
return F.clear(),0;
}
【BZOJ2733】[HNOI2012] 永无乡(启发式合并Splay)的更多相关文章
- bzoj2733: [HNOI2012]永无乡 启发式合并
地址:http://www.lydsy.com/JudgeOnline/problem.php?id=2733 题目: 2733: [HNOI2012]永无乡 Time Limit: 10 Sec ...
- BZOJ 2733: [HNOI2012]永无乡 启发式合并treap
2733: [HNOI2012]永无乡 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- BZOJ 2733 [HNOI2012]永无乡 - 启发式合并主席树
Description 1: 查询一个集合内的K大值 2: 合并两个集合 Solution 启发式合并主席树板子 Code #include<cstdio> #include<cst ...
- bzoj2733: [HNOI2012]永无乡(splay)
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3778 Solved: 2020 Description 永 ...
- [Bzoj2733][Hnoi2012] 永无乡(BST)(Pb_ds tree)
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4108 Solved: 2195[Submit][Statu ...
- [BZOJ2733] [HNOI2012] 永无乡 (splay启发式合并)
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- [bzoj2733][HNOI2012]永无乡_权值线段树_线段树合并
永无乡 bzoj-2733 HNOI-2012 题目大意:题目链接. 注释:略. 想法: 它的查询操作非常友善,就是一个联通块内的$k$小值. 故此我们可以考虑每个联通块建一棵权值线段树. 这样的话每 ...
- BZOJ2733 [HNOI2012]永无乡 【线段树合并】
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- bzoj2733: [HNOI2012]永无乡 线段树合并
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...
随机推荐
- 读《JavaScript权威指南》笔记(一)
1.Number() parseInt() parseFloat() 如果通过Number()转换函数传入一个字符串,它会试图将其转换为一个整数或浮点数直接量,这个方法只能基于十进制数进行转换,并 ...
- 不重新编译安装php模块的方法
如果你有下面两种经历: 如果php通过源码安装(php7),如果后来需要开启某个自带模块(例如ldap,snmp等),通常需要重新编译. 另外一些安装php模块的经历,例如redis,swoole,y ...
- 二维偏序 tree
tree(二维偏序) 最近接触到一些偏序的东西. 传统线段树非叶子节点的划分点mid=(l+r)/2,但小R线段树mid是自己定的.但满足l<=mid<r,其余条件同原来线段树.那么不难发 ...
- SCOJ4427 / TOPOI 4404: Miss Zhao's Graph 解题报告
题目链接 SCOJ TOPOI 题目描述 Problem 给定一个包含n个顶点m条边的带权有向图,找一条边数最多的路径,且路径上的边的权值严格递增.图中可能有重边和自环. Input Data 第一行 ...
- 洛谷 P1439 【模板】最长公共子序列LCS 解题报告
题目传送门 是一道十分经典的LCS问题 很容易想到 的一般算法:主题代码如下: for (int i = 1; i <= n; i++) for (int j = 1; j <= n; ...
- AT2657 Mole and Abandoned Mine
传送门 好神的状压dp啊 首先考虑一个性质,删掉之后的图一定是个联通图 并且每个点最多只与保留下来的那条路径上的一个点有边相连 然后设状态:\(f[s][t]\)代表当前联通块的点的状态为\(s\)和 ...
- Flume NG部署
本次配置单节点的Flume NG 1.下载flume安装包 下载地址:(http://flume.apache.org/download.html) apache-flume-1.6.0-bin.ta ...
- Windows进程通信之一看就懂的匿名管道通信
目录 进程通信之一看就懂的匿名管道通信 一丶匿名管道 1.1何为匿名管道 1.2创建匿名管道需要注意的事项 1.3 创建匿名管道需要的步骤 1.4代码例子 1.5代码运行截图 进程通信之一看就懂的匿名 ...
- 基于nginx的FastCGI的缓存配置
废话不多说了, 直接上配置, 其实 fastcgi_cache 和 proxy_cache 的配置基本一样: # !缓存文件存放目录 # levels 缓存层次 # keys_zone 缓存空间名和共 ...
- {ldelim},{rdelim} - smarty 内建函数
{ldelim}和{rdelim}用来转义模板的分隔符,缺省为{和}.你也可以用{literal}{/literal}来转义文本块(如Javascript或CSS). 例: {* 在模板外将原样打印分 ...