学习参考周莫烦的视频。

Variable:主要是用于训练变量之类的。比如我们经常使用的网络权重,偏置。

值得注意的是Variable在声明是必须赋予初始值。在训练过程中该值很可能会进行不断的加减操作变化。

placeholder:也是用于存储数据,但是主要用于feed_dict的配合,接收输入数据用于训练模型等。placeholder值在训练过程中会不断地被赋予新的值,用于批训练,基本上其值是不会轻易进行加减操作。

placeholder在命名时是不会需要赋予值得,其被赋予值得时间实在feed_dict时。

Variable使用:

这是一个简单的加法训练。需要注意的是tensorflow 中很多操作都可以看做是一个节点。比如这里的assign操作,需要专门做一个update操作节点。

import tensorflow as tf
import numpy as np #Variable 在声明是必须要给定一个 初始值的。同时也要规定他的shape,这里是一个常数,所以就不许要在给定一个shape了。
one = tf.Variable(tf.constant(1))
get = tf.Variable(0)
state = tf.add(one,get)
update = tf.assign(get,state) init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(10):
sess.run(update)
print(sess.run(get))

placeholder使用:

placeholder是作为一个容器,在声明时,并不需要给定一个初始值,与c++等语言不同,你可以把它看做成在运行时他并不执行,只有在feed_dict出现训练时,在给予值(个人看法,不一定对)。

不过placeholder 在命名时时需要指定类型的。如:

xs = tf.placeholder(tf.float32,[None,1],name = "x_input")

这里的xs不仅指定了类型,也定义的shape。如果不定义shape,只要是后续代码中一致,那么可以是任意形式的。

这里给出两个版本的代码,一个用了placeholder去拟合一个曲线,另一个没有使用

placeholder:

 # -*- coding: utf-8 -*-
"""
Created on Tue Jun 13 15:41:23 2017 @author: Jarvis
"""
import tensorflow as tf
import numpy as np x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1+0.3
print (x_data.shape)
xs = tf.placeholder(tf.float32)
ys = tf.placeholder(tf.float32)
W = tf.Variable(1.0)
#W = tf.Variable(tf.random_uniform([1],-1.0,1))
b = tf.Variable(tf.zeros([1]))
y_pre = W*xs+b loss = tf.reduce_mean((tf.square(ys-y_pre))) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50 == 0:
print (sess.run(W),sess.run(b))

没有用,直接使用原始数据:

import tensorflow as tf
import numpy as np x_data = np.random.rand(100).astype(np.float)
y_data = x_data*0.3+0.1 W = tf.Variable(tf.zeros([1]))#这里可能大家会有疑问,W的shape到底是多少?这个Wshape和之前 那个版本的w.shape到底有什么区别呢?详见shape的内容。
b = tf.Variable(tf.zeros([1])) y_pre = W*x_data+b
loss = tf.reduce_mean(tf.square(y_data-y_pre))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step)
print(sess.run(W),sess.run(b))

TFboy养成记 简单小程序(Variable & placeholder)的更多相关文章

  1. 基于C语言libvirt API简单小程序

    libvirt API简单小程序 1.程序代码如下 #include<stdio.h> #include<libvirt/libvirt.h> int getDomainInf ...

  2. 微信小程序中placeholder的样式

    通常,现代浏览器大多支持::placeholder选择器,用于设置placeholder的样式,但是在微信小程序中并不支持这种方式,而是提供了一个专门的属性(placeholder-class)来处理 ...

  3. 关于Hibernate的一个简单小程序

    本人根据视频学习了一下三大框架中比较简单的一个Hibernate,并简单完成了一个运用Hibernate的小程序 Hibernate是一个简化web程序Dao层的一个框架,应用他,可以完全脱离sql语 ...

  4. 小程序红包开发跳坑记 微信小程序红包接口开发过程中遇到的问题 微信小程序红包开发

    现在做小程序的越来越多,商家推广也是一个瓶颈,谁不发点红包,都很难找到人来用你的微信小程序了.于是不管你开发什么小程序功能,你或多或少都要用到小程序来发红包吧.  我们自己之前做公众号发红包,做了两三 ...

  5. TFboy养成记 CNN

    1/先解释下CNN的过程: 首先对一张图片进行卷积,可以有多个卷积核,卷积过后,对每一卷积核对应一个chanel,也就是一张新的图片,图片尺寸可能会变小也可能会不变,然后对这个chanel进行一些po ...

  6. TFboy养成记 MNIST Classification (主要是如何计算accuracy)

    参考:莫烦. 主要是运用的MLP.另外这里用到的是批训练: 这个代码很简单,跟上次的基本没有什么区别. 这里的lossfunction用到的是是交叉熵cross_entropy.可能网上很多形式跟这里 ...

  7. TFboy养成记 多层感知器 MLP

    内容总结与莫烦的视频. 这里多层感知器代码写的是一个简单的三层神经网络,输入层,隐藏层,输出层.代码的目的是你和一个二次曲线.同时,为了保证数据的自然,添加了mean为0,steddv为0.05的噪声 ...

  8. TFboy养成记 tensorboard

    首先介绍几个用法: with tf.name_scope(name = "inputs"): 这个是用于区分区域的.如,train,inputs等. xs = tf.placeho ...

  9. python简单小程序

    #足球队寻找10 到12岁的小女孩(包含10岁和12岁),编写程序询问用户性别和年龄,然后显示一条消息指出这个人是否可以加入球队,询问10次,输出满足条件的总人数#询问10次,输出满足要求的总人数 o ...

随机推荐

  1. WebApi系列~HttpClient的性能隐患

    回到目录 最近在进行开发过程中,基于都是接口开发,A站接口访问B接口接口来请求数据,而在这个过程中我们使用的是HttpClient这个框架,当然也是微软自己的框架,性能当前没有问题,但如果你直接使用官 ...

  2. ubuntu下MySQL修改root密码的多种方法,phpmyadmin空密码无法登陆的解决方法

    phpmyadmin是默认不允许使用空密码的,所以若是在安装时没有设置密码,在登陆phpmyadmin时是个很头疼的问题 方法1是修改phpmyadmin的配置文件,这里不做推荐.. 方法2: php ...

  3. 系统讲解CSS,前端开发最神奇的技术,新手的你一定不能错过

    前面小编带领大家重温了前端开发中最基本的HTML语言.如果你已经掌握了这门语言,那么恭喜你,可以去深入了解CSS技术了.CSS技术最主要的功能就是弥补HTML标记对在页面中显示外观的不足,对这些标记对 ...

  4. vue 父组件传递子组件事件

    在开发中,碰到一个需要从父组件传入方法,子组件点击触发,说白了就是,把方法传入给子组件调用 <el-col v-for='data in spreadFormat.icons' class=&q ...

  5. 【前端】Require.js使用方法总结

    一.为什么要使用require.js 首先一个页面如果在加载多个js文件的时候,浏览器会停止网页渲染,加载文件越多,网页失去响应的时间就会越长:其次,由于js文件之间存在依赖关系,因此必须严格保证加载 ...

  6. LeetCode 455. Assign Cookies (分发曲奇饼干)

    Assume you are an awesome parent and want to give your children some cookies. But, you should give e ...

  7. code forces 436 D. Make a Permutation!

    D. Make a Permutation! time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  8. window10下的eclipse用java连接hadoop执行mapreduce任务

    一.准备工作 1.eclipse连接hadoop的插件,需要版本匹配,这有几个常用的 2 版本的插件 hadoop2x-eclipse-plugin-master 密码:feg1 2.hadoop-c ...

  9. Azure ARM虚拟机部署反恶意软件-安全扩展

    Azure虚拟机,默认情况下没有安装杀毒软件.如果您有此需求可以通过Azure 扩展进行安装,有关Azure反恶意软件的官方说明请参考:https://docs.azure.cn/zh-cn/secu ...

  10. .Net 上传图片之前获取图片的宽高

    Stream st = Request.Files[0].InputStream;                  Byte[] buffer = new Byte[st.Length];      ...