[array] leetcode - 39. Combination Sum - Medium
leetcode - 39. Combination Sum - Medium
descrition
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]
解析
典型的回溯法求解。代码实现中给出了 3 中回溯的方式,都 accepted。微妙的区别应该是在递归的层数不同。对于 candidates[index] 只有两种情况,即:选择或不选择,值得注意的是如果选择的话可以多次重复选择。(可以使用状态转换图进行抽象更便于理解,重复选择实际上是在 index 状态有环,而不选择则是向 index + 1 状态的迁移)
注意:
- 调用函数前用了一个排序,主要是为了递归时剪枝做准备,数组是递增排序,如果太大则可以停止更深层的递归
- 题目说了所有数都是 positive,这其实也可以作为剪枝的条件
- 题目说数组中不存在 duplicate 元素,如果存在的话还需要跳过重复的元素。
一般的,对于回溯问题,找好递归求解的子结构,记得结束点即出口的检查,避免无限循环。在递归过程中可以思考是否可以进行剪枝。
code
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Solution{
public:
vector<vector<int> > combinationSum(vector<int>& candidates, int target){
vector<vector<int> > ans;
vector<int> vecCur;
sort(candidates.begin(), candidates.end());
combinationSumBacktracking0(candidates, 0, target, vecCur, ans);
//combinationSumBacktracking1(candidates, 0, target, vecCur, ans);
//combinationSumBacktracking2(candidates, 0, target, vecCur, ans);
return ans;
}
// candidates in ascending
void combinationSumBacktracking0(vector<int>& candidates, int index, int target,
vector<int>& vecCur, vector<vector<int> >& ans){
if(target < 0)
return;
if(target == 0 && !vecCur.empty()){
ans.push_back(vecCur);
return;
}
// sub-problem, for each element in candidates[index,...,n-1]
// just have two condition: choose or not
for(int i=index; i<candidates.size(); i++){
if(candidates[i] > target) // Note: candidates must in ascending order
break;
// note: not i+1, because the same repeaded number may be chosen from candidates
vecCur.push_back(candidates[i]);
combinationSumBacktracking0(candidates, i, target - candidates[i], vecCur, ans);
vecCur.pop_back();
}
}
void combinationSumBacktracking1(vector<int>& candidates, int index, int target,
vector<int>& vecCur, vector<vector<int> >& ans){
if(target < 0)
return;
if(target == 0){
if(!vecCur.empty())
ans.push_back(vecCur);
return;
}
if(index >= candidates.size())
return;
// choose candidates[index]
// Note: candidates[index] can be choose more than onece
vecCur.push_back(candidates[index]);
combinationSumBacktracking1(candidates, index, target - candidates[index], vecCur, ans);
vecCur.pop_back();
// dosen't choose candidates[index]
combinationSumBacktracking1(candidates, index+1, target, vecCur, ans);
}
void combinationSumBacktracking2(vector<int>& candidates, int index, int target,
vector<int>& vecCur, vector<vector<int> >& ans){
if(target < 0)
return;
if(target == 0){
if(!vecCur.empty())
ans.push_back(vecCur);
return;
}
if(index >= candidates.size())
return;
// choose candidates[index] more than times
int i = 1;
for(; i*candidates[index] <= target; i++){
vecCur.push_back(candidates[index]);
combinationSumBacktracking2(candidates, index+1, target - i*candidates[index], vecCur, ans);
}
for(int j=i-1; j>=1; j--)
vecCur.pop_back();
// don't choose candidates[index]
combinationSumBacktracking2(candidates, index+1, target, vecCur, ans);
}
};
int main()
{
return 0;
}
[array] leetcode - 39. Combination Sum - Medium的更多相关文章
- [array] leetcode - 40. Combination Sum II - Medium
leetcode - 40. Combination Sum II - Medium descrition Given a collection of candidate numbers (C) an ...
- leetcode 39. Combination Sum 、40. Combination Sum II 、216. Combination Sum III
39. Combination Sum 依旧与subsets问题相似,每次选择这个数是否参加到求和中 因为是可以重复的,所以每次递归还是在i上,如果不能重复,就可以变成i+1 class Soluti ...
- [LeetCode] 39. Combination Sum 组合之和
Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), fin ...
- LeetCode 39. Combination Sum (组合的和)
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique c ...
- Java [Leetcode 39]Combination Sum
题目描述: Given a set of candidate numbers (C) and a target number (T), find all unique combinations in ...
- LeetCode 39 Combination Sum(满足求和等于target的所有组合)
题目链接: https://leetcode.com/problems/combination-sum/?tab=Description Problem: 给定数组并且给定一个target,求出所 ...
- [LeetCode] 39. Combination Sum ☆☆☆(数组相加等于指定的数)
https://leetcode.wang/leetCode-39-Combination-Sum.html 描述 Given a set of candidate numbers (candidat ...
- Leetcode 39. Combination Sum
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique c ...
- leetcode 39 Combination Sum --- java
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...
随机推荐
- SharePoint 路在何方?
听着老版<西游记>熟悉的片头曲,想着九寨沟取景的地点现在已然不在了,看着自己的现状,真是五味杂陈.从2010年至今,接触SharePoint已经是第七个年头了,不知不觉都已经成为习惯.从2 ...
- CDH5.11..0安装
1.参考: http://www.cnblogs.com/codedevelop/p/6762555.html grant all privileges on *.* to 'root'@'hostn ...
- hadoop2.5的伪分布式安装配置
一.windows环境下安装 根据博主写的一次性安装成功了: http://blog.csdn.net/antgan/article/details/52067441 二.linux环境下(cento ...
- c# winform treelistview的使用(treegridview)
TreeView控件显示的内容比较单一,如果需要呈现更详细信息TreeListView是一个不错的选择. 先看效果: 首先需要引用文件System.Windows.Forms.TreeListView ...
- Emrips 反质数枚举 javascript实现
今天看到一个kata,提出一个"emirps"的概念:一个质数倒转后得到的是一个不同的质数,这个数叫做"emirps". 例如:13,17是质数,31,71也是 ...
- springboot之Jwt验证
简介 什么是JWT(Json Web Token) jwt是为了在网络应用环境间传递声明而执行的一种基于json的开放标准.该token被设计紧凑且安全的,特别适用于SSO场景. jwt的声明一般被用 ...
- zoj 3195 Design the city LCA Tarjan
题目链接 : ZOJ Problem Set - 3195 题目大意: 求三点之间的最短距离 思路: 有了两点之间的最短距离求法,不难得出: 对于三个点我们两两之间求最短距离 得到 d1 d2 d3 ...
- YII2连表分页
控制器(controller)页面 use \yii\data\Pagination; //引入这个类 public function actionList(){ $data = Clock::fin ...
- SQL Server学习之路(五):“增删改查”之“改”
0.目录 1.前言 2.通过SSMS修改数据 3.通过SQL语句修改数据 3.1 修改单列数据 3.2 修改多列数据 1.前言 增删改查都是对数据的操作,其中"改"对应的SQL语句 ...
- 掌握NIO,程序人生
就像新IO为java带来的革新那样,让我们也开启一段新的程序人生. 关键字:NIO,BIO,伪IO,AIO,多路复用选择器,通道,缓冲区,jdk研究,回调函数,高并发 java.nio 概述 历史背景 ...