题目描述

设 T 为一棵有根树,我们做如下的定义:

• 设 a 和 b 为 T 中的两个不同节点。如果 a 是 b 的祖先,那么称“a 比 b 不知道高明到哪里去了”。

• 设 a 和 b 为 T 中的两个不同节点。如果 a 与 b 在树上的距离不超过某个给定常数 x,那么称“a 与 b 谈笑风生”。

给定一棵 n 个节点的有根树 T,节点的编号为 1 ∼ n,根节点为 1 号节点。你需要回答 q 个询问,询问给定两个整数 p 和 k,问有多少个有序三元组 (a; b; c) 满足:

  1. a、 b 和 c 为 T 中三个不同的点,且 a 为 p 号节点;

  2. a 和 b 都比 c 不知道高明到哪里去了;

  3. a 和 b 谈笑风生。这里谈笑风生中的常数为给定的 k。

输入输出格式

输入格式:

输入文件的第一行含有两个正整数 n 和 q,分别代表有根树的点数与询问的个数。

接下来 n − 1 行,每行描述一条树上的边。每行含有两个整数 u 和 v,代表在节点 u 和 v 之间有一条边。

接下来 q 行,每行描述一个操作。第 i 行含有两个整数,分别表示第 i 个询问的 p 和 k。

输出格式:

输出 q 行,每行对应一个询问,代表询问的答案。

输入输出样例

输入样例#1:

5 3
1 2
1 3
2 4
4 5
2 2
4 1
2 3
输出样例#1:

3
1
3

说明

样例中的树如下图所示:

对于第一个和第三个询问,合法的三元组有 (2,1,4)、 (2,1,5) 和 (2,4,5)。

对于第二个询问,合法的三元组只有 (4,2,5)。

所有测试点的数据规模如下:

对于全部测试数据的所有询问, 1 ≤ p ≤ n, 1 ≤ k ≤ n.

今天是长者的生日,所以要谈笑风生。。。

首先a是固定的,那么分两种情况讨论b的位置:

1.b是a的祖先,这样的贡献是:

2.b在a的子树内,且b是c的祖先,那么我们枚举每一个可能的深度计算答案,那么贡献为:

(size-1是因为要三个点不同)

也就是要维护某个深度的size和,然后因为有dfn的限制,我们可以用可持久化线段树来实现维护。。。

那么我们按照dfn来建主席树,主席树以deep为值域,然后询问就是在主席树上区间求和即可。。。

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=600050;
int to[N],nxt[N],head[N],cnt;
int dfn[N],ed[N],tt,size[N],deep[N],xh[N];
int rt[N*20],rs[N*20],ls[N*20],sz,n,q;
ll sum[N*20];
void lnk(int x,int y){
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,nxt[cnt]=head[y],head[y]=cnt;
}
void dfs(int x,int f){
size[x]=1;deep[x]=deep[f]+1;dfn[x]=++tt,xh[tt]=x;
for(int i=head[x];i;i=nxt[i]){
int y=to[i];if(y==f) continue;dfs(y,x);size[x]+=size[y];
}
ed[x]=tt;
}
void insert(int x,int &y,int l,int r,int id,int v){
y=++sz;ls[y]=ls[x];rs[y]=rs[x];sum[y]=sum[x];
if(l==r){sum[y]+=v;return;}
int mid=(l+r)>>1;
if(id<=mid) insert(ls[x],ls[y],l,mid,id,v);
else insert(rs[x],rs[y],mid+1,r,id,v);
sum[y]=sum[ls[y]]+sum[rs[y]];
}
ll query(int x,int y,int l,int r,int xl,int xr){
if(xl<=l&&r<=xr) return sum[y]-sum[x];
int mid=(l+r)>>1;
if(xr<=mid) return query(ls[x],ls[y],l,mid,xl,xr);
else if(xl>mid) return query(rs[x],rs[y],mid+1,r,xl,xr);
else return query(ls[x],ls[y],l,mid,xl,mid)+query(rs[x],rs[y],mid+1,r,mid+1,xr);
}
int main(){
scanf("%d%d",&n,&q);
for(int i=1;i<n;i++){
int u,v;scanf("%d%d",&u,&v);lnk(u,v);
}
dfs(1,1);
for(int i=1;i<=tt;i++) insert(rt[i-1],rt[i],1,2*n,deep[xh[i]],size[xh[i]]-1);
for(int i=1;i<=q;i++){
int x,k;scanf("%d%d",&x,&k);
ll ans=1ll*min(deep[x]-1,k)*(size[x]-1);
ans+=query(rt[dfn[x]-1],rt[ed[x]],1,2*n,deep[x]+1,deep[x]+k);
printf("%lld\n",ans);
}
return 0;
}

bzoj 3653 [湖南集训]谈笑风生的更多相关文章

  1. 主席树 || 可持久化线段树 || BZOJ 3653: 谈笑风生 || Luogu P3899 [湖南集训]谈笑风生

    题面:P3899 [湖南集训]谈笑风生 题解: 我很喜欢这道题. 因为A是给定的,所以实质是求二元组的个数.我们以A(即给定的P)作为基点寻找答案,那么情况分两类.一种是B为A的父亲,另一种是A为B的 ...

  2. Luogu 3899 [湖南集训]谈笑风生

    BZOJ 3653权限题. 这题方法很多,但我会的不多…… 给定了$a$,我们考虑讨论$b$的位置: 1.$b$在$a$到根的链上,那么这样子$a$的子树中的每一个结点(除了$a$之外)都是可以成为$ ...

  3. luogu P3899 [湖南集训]谈笑风生

    传送门 nmyzd,mgdhls,bnmbzdgdnlql,a,wgttxfs 对于一个点\(a\),点\(b\)只有可能是他的祖先或者在\(a\)子树里 如果点\(b\)是\(a\)祖先,那么答案为 ...

  4. P3899 [湖南集训]谈笑风生

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3653 https://www.luogu.org/problemnew/show/P38 ...

  5. luogu P3899 [湖南集训]谈笑风生 线段树合并

    Code: #include<bits/stdc++.h> #define maxn 300002 #define ll long long using namespace std; vo ...

  6. 洛谷P3899 [湖南集训]谈笑风生(线段树合并)

    题意 题目链接 Sol 线段树合并板子题,目前我看到两种写法,分别是这样的. 前一种每次需要新建一个节点,空间是\(O(4nlogn)\) 后者不需要新建,空间是\(O(nlogn)\)(面向数据算空 ...

  7. 【洛谷 P3899】 [湖南集训]谈笑风生 (主席树)

    题目链接 容易发现\(a,b,c\)肯定是在一条直链上的. 定义\(size(u)\)表示以\(u\)为根的子树大小(不包括\(u\)) 分两种情况, 1.\(b\)是\(a\)的祖先,对答案的贡献是 ...

  8. P3899 [湖南集训]谈笑风生 主席树

    #include<iostream> #include<string.h> #include<algorithm> #include<stdio.h> ...

  9. [Luogu P3899] [湖南集训]谈笑风生 (主席树)

    题面 传送门:https://www.luogu.org/problemnew/show/P3899 Solution 你们搞的这道题啊,excited! 这题真的很有意思. 首先,我们可以先理解一下 ...

随机推荐

  1. PHP+Redis 实例【二】页面缓存 新玩法

    今天算是认识到博客园里的审查团队多内幕了,哈哈,贴个图玩下. 气死宝宝了. 进入主题! 今天就不写什么功能性的了,换下口味说下关于页面级的缓存,应该怎么做. 相信有很多小伙伴查了百度,甚至google ...

  2. 用vue2.x注册一个全局的弹窗alert组件

    一.在实际的开发当中,弹窗是少不了的,默认系统的弹窗样式太丑,难以满足项目的实际需求,所以需要自己定义弹窗组件,把弹窗组价定义为全局的,这样减少每次使用的时候引入麻烦,节省开发时间.本文将分享如何定义 ...

  3. js脚本根据身份证号获取性别、年龄、家庭地址、生日

    做项目测试时需要根据身份证号获取其信息,也不想调接口,就自己在本地通过收集资料整合了一个

  4. Music Tags 隐私政策

    隐私政策 本应用尊重并保护所有使用服务用户的个人隐私权.为了给您提供更准确.更有个性化的服务,本应用会按照本隐私权政策的规定使用和披露您的个人信息.但本应用将以高度的勤勉.审慎义务对待这些信息.除本隐 ...

  5. 【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络GoogLeNet

    前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper ...

  6. Dynamic HTML权威指南(读书笔记)— 第一章 HTML与XHTML参考

    1. 对齐常量(text-align和vertical-align) 1.1 盒外对齐 这种对齐属性决定环绕着元素外部矩形空间的文本对齐方式.W3C中,这类HTML元素包括:applet.iframe ...

  7. 我的csdn博客搬家了

    把csdn上的文章都给搬到我的新博客去了, 将会在新的博客上继续写相关的技术文章 欢迎訪问: http://www.kai-zhou.com

  8. 指尖上的电商---(4).net开发solr

    这一节我们看下如何把查询数据放到server端存储,这里我们须要使用client工具来操作与服务端数据打交道,网上有好多基于.NET开发的SOLRclient,我们这里选择easynet.solr,非 ...

  9. Highcharts使用CSV格式数据绘制图表

    Highcharts使用CSV格式数据绘制图表 CSV(Comma-Separated Values,逗号分隔值文本格式)是採用逗号切割的纯文本数据.通常情况下.每一个数据之间使用逗号切割,几个相关数 ...

  10. 最重要的 Java EE 最佳实践

    參考:IBM WebSphere 开发人员技术期刊: 最重要的 Java EE 最佳实践 IBM WebSphere 开发人员技术期刊: 最重要的 Java EE 最佳实践 2004 年 IBM® W ...