bzoj 4765: 普通计算姬
Description
Input
Output
Sample Input
0 0 3 4 0 1
0 1
1 2
2 3
2 4
3 5
5 6
2 1 2
1 1 1
2 3 6
2 3 5
Sample Output
10
9
HINT
Source
感受到树上分块的邪恶力量!!! %%%XLightGod;
貌似这题有很多种做法,主要是连续编号的子树和不是很好搞!!!
直接讲树上分块的做法好了,不想绕圈子:
子树和依据我们以前打树链剖分的时候(其实应该叫轻重链剖分,今天听到了一位NOI金牌爷说了个叫长链剖分的鬼玩意);
我们知道一个点的子树其实就是一段连续的dfs序;
首先对[1,n]分块,想到分块查询的基本思想
那么每次询问相当与是若干个整块加上剩下的几个点;
我们一步一步来解决:
首先对于每一个块的可以通过统计每个点在子树中出现的次数,那么我们可以通过O(n)的时间计算出整块贡献;
接下来的瓶颈就在于解决如何快速O(1)求出每个点的子树和
根据子树是dfs序中连续的一段我们可以考虑对dfs序进行分块,然后统计所有块的前缀和以及每个块自己内部的前缀和,通过前缀和的基本操作可以O(1)求解
附上代码:
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<queue>
#include<set>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#define lson num<<1
#define rson num<<1|1
using namespace std;
typedef long long ll;
const int N=100001;
int gi()
{
int x=0,flag=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') flag=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*flag;
}
int head[N],to[N*2],nxt[N*2];
int v[N],pos[N],kp[N],dfn[N],id[N],block,num[320][N],fa[N],end[N];
int n,m,cnt,tt,cnt2,root;
unsigned long long tot1[N],tot2[320],tot3[320];
void dfs(int x,int f){
dfn[x]=++tt;id[tt]=x;
for(int i=head[x];i;i=nxt[i]){
int y=to[i];
if(y!=f){
fa[y]=x;dfs(y,x);
}
}
end[x]=tt;
}
inline void lnk(int x,int y){
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,nxt[cnt]=head[y],head[y]=cnt;
}
unsigned long long query(int x){return tot3[pos[x]-1]+tot1[x];}
inline void make_tot1(){
for(int i=1;i<=n;i++) tot1[dfn[i]]=v[i];
for(int i=1;i<=n;i++) {if(kp[i]!=1) tot1[i]+=tot1[i-1];}
}
inline void make_tot2(){
for(int i=1;i<=cnt2;i++)
for(int j=1;j<=n;j++)
num[i][id[j]]=num[i][fa[id[j]]]+(pos[id[j]]==i);
for(int i=1;i<=cnt2;i++)
for(int j=1;j<=n;j++)
tot2[i]+=(unsigned long long)1ll*num[i][j]*v[j];
}
inline void make_tot3(){
for(int i=1;i<=n;i++) tot3[pos[dfn[i]]]+=v[i];
for(int i=1;i<=cnt2;i++) tot3[i]+=tot3[i-1];
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
n=gi(),m=gi();int x,y;
for(int i=1;i<=n;i++) v[i]=gi();
for(int i=1;i<=n;i++){
x=gi(),y=gi();
if(x!=0) lnk(x,y);
else root=y;
}
int block=sqrt(n);
if(n%block) cnt2=n/block+1;
else cnt2=n/block;
for(int i=1;i<=n;i++){
pos[i]=(i-1)/block+1;
kp[i]=(i-1)%block+1;
}
dfs(root,0);
make_tot1();make_tot2();make_tot3();int flag;
while(m--){
flag=gi();
if(flag==1){
x=gi(),y=gi()-v[x];
for(int i=dfn[x];i<=n&&pos[i]==pos[dfn[x]];i++) tot1[i]+=y;
for(int i=1;i<=cnt2;i++) tot2[i]+=(unsigned long long)1ll*num[i][x]*y;
for(int i=pos[dfn[x]];i<=cnt2;i++) tot3[i]+=y;
v[x]+=y;
}
else{
int l=gi(),r=gi();unsigned long long ans=0;
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++)
ans+=query(end[i])-query(dfn[i]-1);
}
else{
for(int i=l;pos[i]==pos[l];i++) ans+=query(end[i])-query(dfn[i]-1);
for(int i=r;pos[i]==pos[r];i--) ans+=query(end[i])-query(dfn[i]-1);
for(int i=pos[l]+1;i<pos[r];i++) ans+=tot2[i];
}
printf("%llu\n",ans);
}
}
return 0;
}
bzoj 4765: 普通计算姬的更多相关文章
- BZOJ 4765 普通计算姬 (分块 + BIT)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 1547 Solved: 329[Submit][Status][Discus ...
- bzoj 4765 普通计算姬 dfs序 + 分块
题目链接 Description "奋战三星期,造台计算机".小G响应号召,花了三小时造了台普通计算姬.普通计算姬比普通计算机要厉害一些.普通计算机能计算数列区间和,而普通计算姬能 ...
- bzoj 4765: 普通计算姬 主席树+替罪羊树思想
题目大意: 给定一棵\(n\)个节点的带权树有根树,设\(sum_p\)表示以点\(p\)为根的这棵子树中所有节点的权 计算姬支持下列两种操作: 给定两个整数\(u,v\),修改点\(u\)的权值为\ ...
- bzoj 4765 普通计算姬(树状数组 + 分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=4765 很nice的一道题啊(可能是因为卡了n久终于做出来了 题意就是给你一棵带点权的有根树,sum( ...
- BZOJ 4765 普通计算姬 dfs序+分块+树状数组+好题!!!
真是道好题...感到灵魂的升华... 按dfs序建树状数组,拿前缀和去求解散块: 按点的标号分块,分成一个个区间,记录区间子树和 的 总和... 具体地,需要记录每个点u修改后,对每一个块i的贡献,记 ...
- BZOJ 4765: 普通计算姬 [分块 树状数组 DFS序]
传送门 题意: 一棵树,支持单点修改和询问以$[l,r]$为根的子树的权值和的和 只有我这种不会分块的沙茶不会做这道题吗? 说一点总结: 子树和当然上$dfs$序了,询问原序列一段区间所有子树和,对原 ...
- BZOJ 4765: 普通计算姬 (分块+树状数组)
传送门 解题思路 树上的分块题,,对于修改操作,每次修改只会对他父亲到根这条链上的元素有影响:对于查询操作,每次查询[l,r]内所有元素的子树,所以就考虑dfn序,进标记一次,出标记一次,然后子树就是 ...
- bzoj 4766: 文艺计算姬 -- 快速乘
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB Description "奋战三星期,造台计算机".小W响应号召,花了三星期 ...
- BZOJ 4766: 文艺计算姬
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 456 Solved: 239[Submit][Status][Discuss] ...
随机推荐
- laravel 500错误的一个解决办法
我从svn上update下来了开发环境的目录,结果当我访问本地的根目录的时候却报了500错误,百度了许多,也看了很多博客,发现都没有解决我的问题,所以我觉得我的解决办法值得一写,当你从svn上upda ...
- .Net Core 2.0 EntityFrameworkCore CodeFirst入门教程
最近难得有时间闲下来,研究了一下.net core 2.0,总的来说,目前除了一些第三方的库不支持外,基本上可以满足我们的项目需求了! 我们就以一个网站开发为例,搭建一个简单的三层架构,先熟悉一下.n ...
- [特斯拉组件]ios高性能PageController
本文来自于腾讯Bugly公众号(weixinBugly),作者:sparrowchen,未经作者同意,请勿转载,原文地址: http://mp.weixin.qq.com/s/hBgvPBP12IQ1 ...
- ES6这些就够了
刚开始用vue或者react,很多时候我们都会把ES6这个大兄弟加入我们的技术栈中.但是ES6那么多那么多特性,我们需要全部都掌握吗?秉着二八原则,掌握好常用的,有用的这个可以让我们快速起飞. 接下来 ...
- 乐呵乐呵得了 golang入坑系列
开场就有料,今天返回去看了看以前的文章,轻松指数有点下降趋势.一琢磨,这不是我的风格呀.一反思,合着是这段时间,脑子里杂七杂八的杂事有点多,事情一多,就忘了快乐.古话说得好:愁也一天,乐也一天,只要还 ...
- 理解defineProperty以及getter、setter
我们常听说vue是用getter与setter实现数据监控的,那么getter与setter到底是什么东西,它与defineProperty是什么关系,平时有哪些用处呢?本文将为大家一一道来. 对象的 ...
- Class 与 Style 绑定
将 v-bind 用于 class 和 style 时,Vue.js 做了专门的增强.表达式结果的类型除了字符串之外,还可以是对象或数组. 绑定 HTML Class 对象语法 <div cla ...
- wkwebview加载本地html的要点
项目中有些页面,我采用了html页面开发,然后用wkwebview加载的设计.在加载过程中遇见了一些问题,在这里进行一些记载和讨论.如有不同意见欢迎进行评论沟通. 问题时候这样的: 在webview的 ...
- gitlab一键安装+配置(备份+LADP认证)
gitlab一键安装+配置(备份+LADP认证) #gitlab一键安装 #centos6 mini, GitLab社区版 #参考官方最新文档 https://www.gitlab.com.cn/in ...
- Spring Cloud Eureka Server集群Demo级搭建
将上篇随笔Spring Cloud Eureka服务Demo级搭建进行改造,改造成一个在本机的伪集群 1.修改hosts文件(windows10 hosts文件位置:C:\Windows\System ...