[笔记]SciPy、Matplotlib基础操作
NumPy、SciPy、Matplotlib,Python下机器学习三大利器。上一篇讲了NumPy基础操作,这节讲讲SciPy和Matplotlib。目前接触到的东西不多,以后再遇到些比较常用的再更新。
scipy是基于numpy的扩充,所以安装时要先安装numpy再安装scipy。scipy的命名空间包含numpy,所以只需import scipy即可,numpy不用import。(所以以下有些东西可能是numpy里的我没分清楚,反正一并写了吧。)
import scipy as sp
import matplotlib.pyplot as plt
首先从文件导入数据,使用genfromtxt函数。文件是《Python语言构建机器学习系统(第二版)》里提供的数据:web_traffic.tsv。读取后把x与y分开。而且里面有几个nan数据,得事先踢掉:
data = sp.genfromtxt("web_traffic.tsv",delimiter="\t")
x = data[:,0]
y = data[:,1]
x = x[~sp.isnan(y)]
y = y[~sp.isnan(y)]
然后我们想可视化这些数据,以图表给出,那就用到matplotlib了:
plt.scatter(x, y, s=6) # 在图标上产生散点,s代表绘制的点的粗细
plt.title("Web traffic") # 标题
plt.xlabel("Time") # x轴标签
plt.ylabel("Hits/hour") # y轴标签
plt.xticks([w*7*24 for w in range(10)],
["week %i" % w for w in range(10)]) # 更改x轴的默认刻度显示,以一星期为一个刻度,range中数字10表示x刻度最多显示到第10周
plt.autoscale(tight=True)
plt.grid(True,linestyle='-',color='0.75')
最后plt.show()
以显示窗口。
然后我们用二次函数作为模型,并使得函数最好的适应数据。
fp,residuals,rank,sv,rcond = sp.polyfit(x,y,2,full=True)
polyfit函数直接帮我们找到了这个使得方差最小的直线的参数,参数存在f1p里面。里面那个参数2就代表产生二次函数,3代笔3次函数,50就是50次函数。我们print fp,得到:
[ 1.05322215e-02 -5.26545650e+00 1.97476082e+03]
full=True使得这个函数返回更多的东西,返回一些额外的后台信息,比如误差(error),就存在那个residuals里:
[ 1.79983508e+08]
poly1d将参数转换成可识别的函数格式,可以把它当做普通python的函数用。注意是poly“1”d,是1不是l。不知道有没有poly2d。
f = sp.poly1d(fp)
linspace函数产生一次函数从x=0到x=x[-1]区间内的函数的值,作为一维矩阵存储。1000那个数字代表产生几个值,数字越大产生的值越多。当然对于一次函数,值为2其实就够了。
fx = sp.linspace(0,x[-1],1000)
值为1000时:
值为5时:
就只计算了5个值,明显弧度不行了。
然后以下plot函数就是把得到的二次函数放到figure上的。legend产生左上角那个d=2标示。
plt.plot(fx,f(fx),linewidth=2)
plt.legend(["d=%i" % f.order],loc="upper left")
同理可得其他次数的最佳适应的函数。以下写了个小小的成品,计算了一次、二次、五十三次函数:
import scipy as sp
import matplotlib.pyplot as plt
data = sp.genfromtxt("web_traffic.tsv",delimiter="\t")
x = data[:,0]
y = data[:,1]
x = x[~sp.isnan(y)]
y = y[~sp.isnan(y)]
plt.scatter(x, y, s=6)
plt.title("Web traffic")
plt.xlabel("Time")
plt.ylabel("Hits/hour")
plt.xticks([w*7*24 for w in range(10)],
["week %i" % w for w in range(10)])
plt.autoscale(tight=True)
plt.grid(True,linestyle='-',color='0.75')
f1p,residuals,rank,sv,rcond = sp.polyfit(x,y,1,full=True)
f1 = sp.poly1d(f1p)
f1x = sp.linspace(0,x[-1],1000)
plt.plot(f1x,f1(f1x),linewidth=2)
plt.legend(["d=%i" % f1.order],loc="upper left")
f2p = sp.polyfit(x,y,2)
f2 = sp.poly1d(f2p)
f2x = sp.linspace(0,x[-1],1000)
plt.plot(f2x,f2(f2x),linewidth=2)
plt.legend(["d=%i" % f2.order],loc="upper left")
f3p = sp.polyfit(x,y,53)
f3 = sp.poly1d(f3p)
f3x = sp.linspace(0,x[-1],1000)
plt.plot(f3x,f3(f3x),linewidth=2)
plt.legend(["d=%i" % f3.order],loc="upper left")
plt.show()
[笔记]SciPy、Matplotlib基础操作的更多相关文章
- (2.2)学习笔记之mysql基础操作(登录及账户权限设置)
本系列学习笔记主要讲如下几个方面: 本文笔记[三:mysql登录][四:账户权限设置][五:mysql数据库安全配置] 三.mysql登录 常用登录方式如下: 四.账户权限设置 (4.1)查看用户表, ...
- (2.3)学习笔记之mysql基础操作(表/库操作)
本系列学习笔记主要讲如下几个方面: 本文笔记[六:表操作--线上可以直接删除表吗?] 附加:库操作 [1]创建制定字符集的数据库 需求描述: 在创建DB的时候指定字符集. 操作过程: 1.使用crea ...
- Git 学习笔记--1.Git基础操作
取得项目的Git仓库 有两种方式取得Git项目仓库.第一种是在现存的目录下,通过导入所有文件来创建新的Git仓库.第二种是从已有的Git仓库克隆出一个新的镜像仓库. 在工作目录中初始化新仓库 要对现 ...
- 11-numpy笔记-莫烦基础操作1
代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...
- Java基础复习笔记系列 七 IO操作
Java基础复习笔记系列之 IO操作 我们说的出入,都是站在程序的角度来说的.FileInputStream是读入数据.?????? 1.流是什么东西? 这章的理解的关键是:形象思维.一个管道插入了一 ...
- 笔记-flask基础操作
笔记-flask基础操作 1. 前言 本文为flask基础学习及操作笔记,主要内容为flask基础操作及相关代码. 2. 开发环境配置 2.1. 编译环境准备 安装相关Lib ...
- 笔记-mysql-管理及基础操作
笔记-mysql使用-管理及基础操作 1. 简介 mysql是一个免费的关系型数据库,不过好像被oracle收购了.... 希望它继续免费. 1.1. 相关术语 数据库,表,列,行,冗 ...
- 小白学 Python 数据分析(17):Matplotlib(二)基础操作
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- disruptor笔记之三:环形队列的基础操作(不用Disruptor类)
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
随机推荐
- CSS左侧固定宽 右侧自适应(兼容所有浏览器)
左侧固定宽,右侧自适应屏幕宽: 左右两列,等高布局: 左右两列要求有最小高度,例如:200px;(当内容超出200时,会自动以等高的方式增高) 要求不用JS或CSS行为实现: 仔细分析试题要求,要达到 ...
- 自动部署Nginx和nfs并架设Nginx集群脚本
本人经过多次尝试,简单完成了自动部署Nginx和nfs脚本,并且能够自动部署web反向代理集群,下面详细的阐述一下本人的思路.(以下脚本本人处于初学阶段,写的并不是很完善,所以需要后期进行整理和修正, ...
- 储存过程嵌套临时表同名引发的BUG?
临时表使用:存储过程嵌套时,均创建了相同名称的临时表. create procedure SP_A ( @i int output )asbegin create table #t ( ta int ...
- 老李推荐:第3章3节《MonkeyRunner源码剖析》脚本编写示例: MonkeyImage API使用示例 1
老李推荐:第3章3节<MonkeyRunner源码剖析>脚本编写示例: MonkeyImage API使用示例 在上一节的第一个“增加日记”的示例中,我们并没有看到日记是否真的增加成功 ...
- redux计算器
//简单运用redux写了一个加减乘除功能 <!DOCTYPE html><html lang="en"><head> <meta cha ...
- 使用U盘安装ubuntu 12.04(使用大白菜u盘启动工具)
家里有个u盘启动盘,用大白菜U盘工具做的. 1.把iso文件放到u盘里,把ISO文件中的casper目录下的vmlinuz和initrd拷贝到u盘根目录下: 2.修改启动顺序,选u盘启动: 3.启动时 ...
- 操作系统之cache、伙伴系统、内存碎片、段式页式存储管理
存储管理是操作系统非常重要的功能之一,本文主要介绍操作系统存储管理的基础知识,包括缓存相关知识.连续内存分配.伙伴系统.非连续内存分配.内存碎片等,并结合linux系统对这些知识进行简单的验证.文章内 ...
- myeclipse2017破解失败解决办法
最近,笔者安装的myeclipse2017破解出了问题,破解本来是很简单的事,就是几步而已,但是一直出问题,现在安利一波myeclipse2017版破解失败解决办法.诸如下图:()因为笔者已经破解好了 ...
- 常用 SQL 语句使用的总结
--SQL 语句为表添加字段并设置默认值 alter table Student --表名 add fee --添加的字段名 int --字段类型 not null --是否为空 --默认值 --修改 ...
- yii2.0套用模板问题
载入视图 在控制器中: $this->render(); 会加载布局 $this->renderPartial(); 不会加载布局(也不能载入框架自带的jquery等) Yii2 选择布局 ...