bzoj1487 [HNOI2009]无归岛
Description
Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种。但是这些物种都有一个共同的生活习性:对于同一个岛
上的任意两个生物,他们有且仅有一个公共朋友,即对同一岛上的任意两个生物a和b有且仅有一个生物c既是a的朋友也是b的朋友,当然某些岛上也可能会只有
一个生物孤单地生活着。这一习性有一个明显的好处,当两个生物发生矛盾的时候,他们可以请那个唯一的公共朋友来裁决谁对谁错。
另外,岛与岛之间也有交流,具体来说,每个岛都会挑选出一个最聪明的生物做代表,然后这个生物与他相邻的两个岛的代表成为朋友。
不行的是,A世界准备入侵Neverland,作为Neverland的守护
者,Lostmonkey想知道在一种比较坏的情况下Never的战斗力。因为和朋友并肩作战,能力会得到提升,所以Lostmonkey想知道在不选出
一对朋友的情况下Neverland的最大战斗力。即选出一些生物,且没有一对生物是朋友,并且要求它们的战斗力之和最大。
Input
第
一行包含用空格隔开的两个整数n和m,分别表示Neverland的生物种数和朋友对数。接下来的m行描述所有朋友对,具体来说,每行包含用空格隔开的两
个整数a和b,表示生物a和生物b是朋友(每对朋友只出现一次)。第m+2行包含用空格隔开的n个整数,其中第i个整数表示生物i的战斗力Ai。输入数据
保证4<=n<=100000,1<=a,b<=n,1<=m<=200000,-1000<=Ai&
lt;=1000.
Output
仅包含一个整数,表示满足条件的最大战斗力。
Sample Input
6 7
1 2
2 3
3 4
4 1
3 6
3 5
5 6
20 10 30 15 20 10
Sample Output
【样例说明】
有四个岛,生物1在1号岛,生物2在2号岛,生物3、5、6在3号岛,生物4在4号岛。
HINT
NeverLand这个单词在“小飞侠彼得潘”中译为梦幻岛,在这却成为无归岛,真是汗啊.
正解:仙人掌$DP$。
和小c的独立集是一样的:http://www.cnblogs.com/wfj2048/p/6641693.html
//It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1<<30)
#define N (100010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ int nt,to; }g[]; int head[N],fa[N],dep[N],dfn[N],low[N],vis[N],val[N],f[][N],ff[][N],n,m,num,cnt; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG int from,RG int to){
g[++num]=(edge){head[from],to},head[from]=num; return;
} il void dp(RG int x,RG int rt,RG int dep,RG int tot){
if (dep==tot) return; RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (fa[v]!=x || !vis[v]) continue;
dp(v,rt,dep+,tot),ff[][x]+=ff[][v];
if (v==rt) ff[][x]+=ff[][v];
else ff[][x]+=max(ff[][v],ff[][v]);
}
if (x==rt) ff[][x]=; return;
} il void circle(RG int rt,RG int x){
RG int tot=dep[x]-dep[rt]+;
ff[][rt]=f[][rt],ff[][rt]=f[][rt],vis[rt]=;
for (RG int i=x;i!=rt;i=fa[i])
ff[][i]=f[][i],ff[][i]=f[][i],vis[i]=;
dp(rt,rt,,tot);
RG int res1=ff[][rt],res2=ff[][rt];
ff[][rt]=f[][rt],ff[][rt]=f[][rt];
for (RG int i=x;i!=rt;i=fa[i])
ff[][i]=f[][i],ff[][i]=f[][i];
dp(rt,x,,tot);
f[][rt]=max(f[][rt],max(res1,ff[][rt]));
f[][rt]=max(f[][rt],max(res2,ff[][rt]));
for (RG int i=x;i!=rt;i=fa[i]) vis[i]=;
vis[rt]=; return;
} il void dfs(RG int x,RG int p){
fa[x]=p,dep[x]=dep[p]+,f[][x]=val[x];
dfn[x]=low[x]=++cnt; RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p) continue;
if (!dfn[v]) dfs(v,x),low[x]=min(low[x],low[v]);
else low[x]=min(low[x],dfn[v]);
if (dfn[x]<low[v]) f[][x]+=f[][v],f[][x]+=max(f[][v],f[][v]);
}
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p) continue;
if (fa[v]!=x && dfn[x]<dfn[v]) circle(x,v);
}
return;
} il void work(){
n=gi(),m=gi();
for (RG int i=,x,y;i<=m;++i){
x=gi(),y=gi();
insert(x,y),insert(y,x);
}
for (RG int i=;i<=n;++i) val[i]=gi();
dfs(,); printf("%d",max(f[][],f[][])); return;
} int main(){
File("c");
work();
return ;
}
bzoj1487 [HNOI2009]无归岛的更多相关文章
- BZOJ1487 [HNOI2009]无归岛 【仙人掌dp】
题目链接 BZOJ1487 题解 就是一个简单的仙人掌最大权独立集 还是不会圆方树 老老实实地树形Dp + 环处理 #include<iostream> #include<cstdi ...
- 2019.02.07 bzoj1487: [HNOI2009]无归岛(仙人掌+树形dp)
传送门 人脑转化条件过后的题意简述:给你一个仙人掌求最大带权独立集. 思路:跟这题没啥变化好吗?再写一遍加深记忆吧. 就是把每个环提出来分别枚举环在图中的最高点选还是不选分别dpdpdp一下即可,时间 ...
- 【BZOJ1487】[HNOI2009]无归岛(动态规划)
[BZOJ1487][HNOI2009]无归岛(动态规划) 题面 BZOJ 洛谷 题解 哪来的这么多废话啊,直接说一个仙人掌得了. 然后就是要你求仙人掌最大独立集了.(随便蒯份原来的代码就过了) 不过 ...
- P4410 [HNOI2009]无归岛
P4410 [HNOI2009]无归岛 显然这还是一个仙人掌图 对于同一个岛上的任意两个生物,他们有且仅有一个公共朋友 要求求最大独立集,和树形dp一样,遇到环时单独提出来处理一下就好了 #inclu ...
- 【刷题】BZOJ 1487 [HNOI2009]无归岛
Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...
- 【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)
题目: BZOJ1487 分析: 题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下: 先考虑单独一个岛的情况.第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 ...
- [HNOI2009]无归岛
Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...
- 【题解】HNOI2009无归岛
这题真的是无语了,在哪个岛上根本就没有任何的用处……不过我是画了下图,感受到一定是仙人掌,并不会证.有谁会证的求解…… 如果当做仙人掌来做确实十分的简单.只要像没有上司的舞会一样树形dp就好了,遇到环 ...
- Luogu-4410 [HNOI2009]无归岛
裸的仙人掌最大独立子集,结果一个zz的错误让我调了好久... \(-inf\)开始设为\(0x7fffffff\)结果\(A_i\)有负数一加就炸了 #include<cstdio> #i ...
随机推荐
- Xamarin自定义布局系列——PivotPage,多页面切换控件
PivotPage ---- 多页面切换控件 PivotPage是一个多页面切换控件,类似安卓中的ViewPager和UWP中的Pivot枢轴控件. 起初打算直接通过ScrollView+StackL ...
- IntelliJ Idea和IntelliJ webstrm 常用快捷键
Ctrl+Shift + Enter,语句完成"!",否定完成,输入表达式时按 "!"键Ctrl+E,最近的文件Ctrl+Shift+E,最近更改的文件Shif ...
- ViewPager 滑动一半的判断方法以及左滑右滑判断
做项目的时候,会碰到用viewpager + fragments去实现多页滑动.有些时候需要完成:界面在滑动到一半或是一半以上的时候,需要把title之类的切换到下一个页面.这个时候仅仅依赖Viewp ...
- Docker(开课吧笔记)
1.Docker基本概念 Docker运行在Linux,需要git技能 docker官网解析 来源于容器又不仅仅是容器,第一个版本基于LXC,远远超过容器概念 交付时拿到的是镜像,直接run运 ...
- jsp页面中从forEach里向action里面传递其中的一个对象
<c:forEach var="user" items="${users }"> <form action="user_update ...
- CSS.03 -- 浏览器行高、字体;盒子模型--边框、内边距、外边距
如果此时你也在自学中,请使用 FireWorks CS6 进行切图测距等,百度一下吧~ Fireworks的基本使用 新建文件 ctrl+n 打开文件 ctrl+o 调出和隐藏标尺 ctrl+r ...
- 英文单词断行问题:CSS中word-break、word-wrap以及hyphens的兼容性和区别
CSS中一提到单词断行,最先映入脑海的肯定是word-break和word-wrap这两条属性.但对于这两条属性到底有什么区别,兼容性如何,我一直都概念模糊.今天抽空把它们以及CSS3中新加入的断行属 ...
- 关于 Python generator(生成器)的类比
Python 的生成器运用仿佛是最完美的 xing爱,生成器本身和循环代表男女,结束代表同时达到高潮,不是很精准,但很有趣啊!哈哈哈,一下记住了
- 如何用Android Studio查看build.gradle源码
上一篇博客里讲过 build.gradle 里的每一行代码基本都是在调用一个方法,既然是这样,我们就可以用 android studio(下面简称as) 去查看它源码的方法注释说明,这样就可以理解每个 ...
- oracle删除字段中的空格、回车及指定字符
create or replace procedure PROC_test is --Description:删除字段中的指定字符(回车chr(13).换行chr(10)) --By LiChao - ...