Description

Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种。但是这些物种都有一个共同的生活习性:对于同一个岛
上的任意两个生物,他们有且仅有一个公共朋友,即对同一岛上的任意两个生物a和b有且仅有一个生物c既是a的朋友也是b的朋友,当然某些岛上也可能会只有
一个生物孤单地生活着。这一习性有一个明显的好处,当两个生物发生矛盾的时候,他们可以请那个唯一的公共朋友来裁决谁对谁错。

另外,岛与岛之间也有交流,具体来说,每个岛都会挑选出一个最聪明的生物做代表,然后这个生物与他相邻的两个岛的代表成为朋友。

不行的是,A世界准备入侵Neverland,作为Neverland的守护
者,Lostmonkey想知道在一种比较坏的情况下Never的战斗力。因为和朋友并肩作战,能力会得到提升,所以Lostmonkey想知道在不选出
一对朋友的情况下Neverland的最大战斗力。即选出一些生物,且没有一对生物是朋友,并且要求它们的战斗力之和最大。

Input


一行包含用空格隔开的两个整数n和m,分别表示Neverland的生物种数和朋友对数。接下来的m行描述所有朋友对,具体来说,每行包含用空格隔开的两
个整数a和b,表示生物a和生物b是朋友(每对朋友只出现一次)。第m+2行包含用空格隔开的n个整数,其中第i个整数表示生物i的战斗力Ai。输入数据
保证4<=n<=100000,1<=a,b<=n,1<=m<=200000,-1000<=Ai&
lt;=1000.

Output

仅包含一个整数,表示满足条件的最大战斗力。

Sample Input

6 7
1 2
2 3
3 4
4 1
3 6
3 5
5 6
20 10 30 15 20 10

Sample Output

50

【样例说明】

有四个岛,生物1在1号岛,生物2在2号岛,生物3、5、6在3号岛,生物4在4号岛。

HINT

NeverLand这个单词在“小飞侠彼得潘”中译为梦幻岛,在这却成为无归岛,真是汗啊.

正解:仙人掌$DP$。

和小c的独立集是一样的:http://www.cnblogs.com/wfj2048/p/6641693.html

 //It is made by wfj_2048~
#include <algorithm>
#include <iostream>
#include <complex>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define inf (1<<30)
#define N (100010)
#define il inline
#define RG register
#define ll long long
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; struct edge{ int nt,to; }g[]; int head[N],fa[N],dep[N],dfn[N],low[N],vis[N],val[N],f[][N],ff[][N],n,m,num,cnt; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void insert(RG int from,RG int to){
g[++num]=(edge){head[from],to},head[from]=num; return;
} il void dp(RG int x,RG int rt,RG int dep,RG int tot){
if (dep==tot) return; RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (fa[v]!=x || !vis[v]) continue;
dp(v,rt,dep+,tot),ff[][x]+=ff[][v];
if (v==rt) ff[][x]+=ff[][v];
else ff[][x]+=max(ff[][v],ff[][v]);
}
if (x==rt) ff[][x]=; return;
} il void circle(RG int rt,RG int x){
RG int tot=dep[x]-dep[rt]+;
ff[][rt]=f[][rt],ff[][rt]=f[][rt],vis[rt]=;
for (RG int i=x;i!=rt;i=fa[i])
ff[][i]=f[][i],ff[][i]=f[][i],vis[i]=;
dp(rt,rt,,tot);
RG int res1=ff[][rt],res2=ff[][rt];
ff[][rt]=f[][rt],ff[][rt]=f[][rt];
for (RG int i=x;i!=rt;i=fa[i])
ff[][i]=f[][i],ff[][i]=f[][i];
dp(rt,x,,tot);
f[][rt]=max(f[][rt],max(res1,ff[][rt]));
f[][rt]=max(f[][rt],max(res2,ff[][rt]));
for (RG int i=x;i!=rt;i=fa[i]) vis[i]=;
vis[rt]=; return;
} il void dfs(RG int x,RG int p){
fa[x]=p,dep[x]=dep[p]+,f[][x]=val[x];
dfn[x]=low[x]=++cnt; RG int v;
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p) continue;
if (!dfn[v]) dfs(v,x),low[x]=min(low[x],low[v]);
else low[x]=min(low[x],dfn[v]);
if (dfn[x]<low[v]) f[][x]+=f[][v],f[][x]+=max(f[][v],f[][v]);
}
for (RG int i=head[x];i;i=g[i].nt){
v=g[i].to; if (v==p) continue;
if (fa[v]!=x && dfn[x]<dfn[v]) circle(x,v);
}
return;
} il void work(){
n=gi(),m=gi();
for (RG int i=,x,y;i<=m;++i){
x=gi(),y=gi();
insert(x,y),insert(y,x);
}
for (RG int i=;i<=n;++i) val[i]=gi();
dfs(,); printf("%d",max(f[][],f[][])); return;
} int main(){
File("c");
work();
return ;
}

bzoj1487 [HNOI2009]无归岛的更多相关文章

  1. BZOJ1487 [HNOI2009]无归岛 【仙人掌dp】

    题目链接 BZOJ1487 题解 就是一个简单的仙人掌最大权独立集 还是不会圆方树 老老实实地树形Dp + 环处理 #include<iostream> #include<cstdi ...

  2. 2019.02.07 bzoj1487: [HNOI2009]无归岛(仙人掌+树形dp)

    传送门 人脑转化条件过后的题意简述:给你一个仙人掌求最大带权独立集. 思路:跟这题没啥变化好吗?再写一遍加深记忆吧. 就是把每个环提出来分别枚举环在图中的最高点选还是不选分别dpdpdp一下即可,时间 ...

  3. 【BZOJ1487】[HNOI2009]无归岛(动态规划)

    [BZOJ1487][HNOI2009]无归岛(动态规划) 题面 BZOJ 洛谷 题解 哪来的这么多废话啊,直接说一个仙人掌得了. 然后就是要你求仙人掌最大独立集了.(随便蒯份原来的代码就过了) 不过 ...

  4. P4410 [HNOI2009]无归岛

    P4410 [HNOI2009]无归岛 显然这还是一个仙人掌图 对于同一个岛上的任意两个生物,他们有且仅有一个公共朋友 要求求最大独立集,和树形dp一样,遇到环时单独提出来处理一下就好了 #inclu ...

  5. 【刷题】BZOJ 1487 [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...

  6. 【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)

    题目: BZOJ1487 分析: 题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下: 先考虑单独一个岛的情况.第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 ...

  7. [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...

  8. 【题解】HNOI2009无归岛

    这题真的是无语了,在哪个岛上根本就没有任何的用处……不过我是画了下图,感受到一定是仙人掌,并不会证.有谁会证的求解…… 如果当做仙人掌来做确实十分的简单.只要像没有上司的舞会一样树形dp就好了,遇到环 ...

  9. Luogu-4410 [HNOI2009]无归岛

    裸的仙人掌最大独立子集,结果一个zz的错误让我调了好久... \(-inf\)开始设为\(0x7fffffff\)结果\(A_i\)有负数一加就炸了 #include<cstdio> #i ...

随机推荐

  1. JSON的服务器开发之路

    JSON的服务器开发之路 不知道需要哪儿些包... /dcywpt/WebRoot/WEB-INF/lib/commons-collections-3.2.jar /dcywpt/WebRoot/WE ...

  2. 【转】nginx配置:location配置方法及实例详解

    location匹配的是nginx的哪个变量? $request_uri location的匹配种类有哪些? 格式 location [ 空格 | = | ~ | ~* | !~ | !~* ] /u ...

  3. 小梦windows phone 8.1开发:语音朗读

    使用SpeechSynthesizer类可以实现文本朗读功能,位于 Windows.Media.SpeechSynthesis命名空间.有了它我们就可以实现有声小说了,是不是很爽.下面给出一个将文本块 ...

  4. Android开发之获取xml文件的输入流对象

    介绍两种Android开发中获取xml文件的输入流对象 第一种:通过assets目录获取 1.首先是在Project下app/src/main目录下创建一个assets文件夹,将需要获取的xml文件放 ...

  5. x战警 天启高清完整版下载

    天启出生于埃及第一王朝,是地球上最古老.最强大的变种人沙巴泊,曾拥有无数信众,但后来遭人背叛,被人活埋.几千年后,强大无匹而且永生不朽的天启从数千年的深埋中获释,愤怒的他发现同类不再被视为神祇,他对人 ...

  6. Docker remote API简单配置使用

    1.启动docker remote API的方式如下: docker -d -H uninx:///var/run/docker.sock -H tcp://0.0.0.0:5678 2.但是为了伴随 ...

  7. CSS3 Columns:比table更好用的分列式布局方法

    CSS里一直有一个让我们头疼的问题,就是创建布局很麻烦.当然,有很多方式,有很多技术都可以创建各种布局,但我们总觉得CSS里应该提供一些新属性,让我们能更好的管理布局.幸运的是,CSS3里提供了一批新 ...

  8. dotweb——go语言的一个微型web框架(二)启动dotweb

    以上的代码截图表示启动一个dotweb服务,在浏览器里输入127.0.0.1:8080,将会得到一个"index"的页面. app := dotweb.New() dotweb.N ...

  9. UT源代码123

    (3)设计佣金问题的程序 commission方法是用来计算销售佣金的需求,手机配件的销售商,手机配件有耳机(headphone).手机壳(Mobile phone shell).手机贴膜(Cellp ...

  10. 关于开发环境中的消息在download时没有下载下来时的问题

    业务场景:在开发环境改了一些代码,现在需要将这些代码(包括class和数据库对象)移植到开发环境,整理出了Objectlist(就是该模块定义了哪些数据库对象),然后上传到FTP服务器上时,再执行do ...