HDU1024 DP的优化 最大M子段和问题
Max Sum Plus Plus
Total Submission(s): 31583 Accepted Submission(s): 11174
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Process to the end of file.
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<memory.h>
using namespace std;
int dp[][],a[];
int main()
{
int n,m,j,i,k,Max;
while(~scanf("%d%d",&m,&n)){
Max=;
memset(dp,,sizeof(dp));
for(i=;i<=n;i++) scanf("%d",&a[i]);
for(i=;i<=m;i++)
for(j=i+1;j<=n;j++){
dp[i%][j]=dp[i%][j-]+a[j];
for(k=i-;k<=j-;k++)
if(dp[(i-)%][k]+a[j]>dp[i%][j]) dp[i%][j]=dp[(i-)%][k]+a[j];
if(i==m&&dp[i%][j]>Max) Max=dp[i%][j];
}
printf("%d\n",Max);
}
return ;
}
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<memory.h>
using namespace std;
int dp[][],a[];
int main()
{
int n,m,j,i,k,Max,Maxp;
while(~scanf("%d%d",&m,&n)){
Max=-;
for(i=;i<=n;i++) scanf("%d",&a[i]);
for(i=;i<=n;i++) dp[][i]=dp[][i]=; for(i=;i<=m;i++) {
Maxp=dp[(i-)%][i-];
dp[i%][i]=dp[(i-)%][i-]+a[i];
for(j=i+;j<=n-m+i;j++){
if(dp[(i-)%][j-]>Maxp) Maxp=dp[(i-)%][j-];
dp[i%][j]=dp[i%][j-]+a[j];
if(Maxp+a[j]>dp[i%][j]) dp[i%][j]=Maxp+a[j];
}
}
for(i=m;i<=n;i++)
if(dp[m%][i]>Max) Max=dp[m%][i];
printf("%d\n",Max);
}
return ;
}
至于此题的数据范围,呵呵,不存在的。
HDU1024 DP的优化 最大M子段和问题的更多相关文章
- 「学习笔记」wqs二分/dp凸优化
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼
目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...
- HDU3480_区间DP平行四边形优化
HDU3480_区间DP平行四边形优化 做到现在能一眼看出来是区间DP的问题了 也能够知道dp[i][j]表示前 i 个节点被分为 j 个区间所取得的最优值的情况 cost[i][j]表示从i ...
- 动态规划DP的优化
写一写要讲什么免得忘记了.DP的优化. 大概围绕着"是什么","有什么用","怎么用"三个方面讲. 主要是<算法竞赛入门经典>里 ...
- 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra
题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
随机推荐
- 汇编指令-adr与ldr伪汇编区别(8)
adr :相对寻址,与当前位置有关 ldr :绝对寻址,与当前位置无关 在初始化SDRAM时就会用到adr,代码如下: /* 初始化SDRAM */ ldr r0,=BWSCON //r0=SDRA ...
- Windows10下通过anaconda安装tensorflow
博主经历了很多的坎坷磨难才找到一个比较好的在win10下安装TensorFlow的方法: 首先需要说明的是如果你想通过Anaconda来安装tensorflow的话,首先要确认你的python的版本是 ...
- 基础知识(C#语法、数据库SQL Server)回顾与总结
前言 已经有大概一个多月没有更新博客,可能是开始变得有点懒散了吧,有时候想写,但是又需要额外投入更多的时间去学习,感觉精力完全不够用啊,所以为了弥补这一个多月的潜水,决定写一篇,衔接9月未写博客的空缺 ...
- 命令行利用KVM创建虚拟机
一,实验环境 OS:CENTOS6.5 X86_64 二,KVM宿主环境配置 1.cat /proc/cpuinfo | egrep 'vmx|svm' //查看是否支持虚拟技术 2.安装KVM相关 ...
- 软件工程(GZSD2015)第二次作业小结
第二次作业,从4月7号开始,陆续开始提交作业.根据同学们提交的作业报告,相比第一次作业,已经有了巨大改变,大家开始有了完整的实践,对那些抽象的名词也开始有了直观的感受,这很好.然后有一些普遍存在的问题 ...
- 个人作业2—英语学习APP案例分析
第一部分 调研, 评测 1.下载并使用,描述最简单直观的个人第一次上手体验. 一打开就受到暴击! 界面布局与大部分学习类APP类似,功能模块.搜索框跟一些日常推送.界面简单功能一目了然,方便操作. 2 ...
- 201521123028《Java程序设计》第4周学习总结
1. 本周学习总结 2. 书面作业 Q1.注释的应用 使用类的注释与方法的注释为前面编写的类与方法进行注释,并在Eclipse中查看. 对上周PTA的实验5-3中的矩形和圆形类做注释. Q2.面向对象 ...
- 201521123102 《Java程序设计》第2周学习总结
#1. 本周学习总结(1)学习使用码云存储代码(2)掌握了常见数据类型的使用.转换(3)回顾了前面学过的基本语法(4)复习一二三章内容 #2. 书面作业**Q1.使用Eclipse关联jdk源代码,并 ...
- 201521123095 《Java程序设计》第11周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 互斥访问与同步访问 完成题集4-4(互斥访问)与4-5(同步访问) 1. ...
- Struts2第四篇【请求数据自动封装、Action得到域对象】
前言 前三篇的Struts博文基本把Struts的配置信息讲解完了-..本博文主要讲解Struts对数据的处理 一般地,我们使用Servlet的时候都是分为几个步骤的: 得到web层的数据.封装数据 ...