HDU1024 DP的优化 最大M子段和问题
Max Sum Plus Plus
Total Submission(s): 31583 Accepted Submission(s): 11174
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Process to the end of file.
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<memory.h>
using namespace std;
int dp[][],a[];
int main()
{
int n,m,j,i,k,Max;
while(~scanf("%d%d",&m,&n)){
Max=;
memset(dp,,sizeof(dp));
for(i=;i<=n;i++) scanf("%d",&a[i]);
for(i=;i<=m;i++)
for(j=i+1;j<=n;j++){
dp[i%][j]=dp[i%][j-]+a[j];
for(k=i-;k<=j-;k++)
if(dp[(i-)%][k]+a[j]>dp[i%][j]) dp[i%][j]=dp[(i-)%][k]+a[j];
if(i==m&&dp[i%][j]>Max) Max=dp[i%][j];
}
printf("%d\n",Max);
}
return ;
}
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<memory.h>
using namespace std;
int dp[][],a[];
int main()
{
int n,m,j,i,k,Max,Maxp;
while(~scanf("%d%d",&m,&n)){
Max=-;
for(i=;i<=n;i++) scanf("%d",&a[i]);
for(i=;i<=n;i++) dp[][i]=dp[][i]=; for(i=;i<=m;i++) {
Maxp=dp[(i-)%][i-];
dp[i%][i]=dp[(i-)%][i-]+a[i];
for(j=i+;j<=n-m+i;j++){
if(dp[(i-)%][j-]>Maxp) Maxp=dp[(i-)%][j-];
dp[i%][j]=dp[i%][j-]+a[j];
if(Maxp+a[j]>dp[i%][j]) dp[i%][j]=Maxp+a[j];
}
}
for(i=m;i<=n;i++)
if(dp[m%][i]>Max) Max=dp[m%][i];
printf("%d\n",Max);
}
return ;
}
至于此题的数据范围,呵呵,不存在的。
HDU1024 DP的优化 最大M子段和问题的更多相关文章
- 「学习笔记」wqs二分/dp凸优化
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼
目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...
- HDU3480_区间DP平行四边形优化
HDU3480_区间DP平行四边形优化 做到现在能一眼看出来是区间DP的问题了 也能够知道dp[i][j]表示前 i 个节点被分为 j 个区间所取得的最优值的情况 cost[i][j]表示从i ...
- 动态规划DP的优化
写一写要讲什么免得忘记了.DP的优化. 大概围绕着"是什么","有什么用","怎么用"三个方面讲. 主要是<算法竞赛入门经典>里 ...
- 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra
题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
随机推荐
- mysql 用多次查询代替一次复杂join查询的优点分析
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt344 多高性能的应用都会对关联查询进行分解.简单地,可以对每一个表进行一次单 ...
- vue-cli搭建多页面项目如何配置
这里使用的是webpack模板. 首先安装vue-cli,执行命令 npm install vue-cli -g: 安装完成后初始化一个项目模板:vue init webpack myproject; ...
- 裸机LCD驱动配置
横屏4.3寸LCD为480*272(行:480个像素点 列:272个行) 1.1 LCD原理图 : Pin1:Von 电源正(这里由硬件自动控制) Pin2:VM/VDEN 数据使能 ...
- 团队作业8——Beta 阶段冲刺7th day
一.当天站立式会议 二.每个人的工作 (1)昨天已完成的工作(具体在表格中) 完善支付功能 (2)今天计划完成的工作(具体如下) 测试与正式发布 (3) 工作中遇到的困难(在表格中) 成员 昨天已完成 ...
- 扫雷游戏制作过程(C#描述):第五节、菜单操作(续)
前言 这里给出教程原文地址. 该项目已经放在github上托管. 发布版已经分享到百度网盘 菜单操作(续) 接着节前一章节的内容,我们继续完善菜单栏的功能. 我们首先,先完善Rank的选项,我们希望我 ...
- 201521123037 《Java程序设计》第8周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 1.2 选做:收集你认为有用的代码片段 1. String[] list1=str.split(" ...
- 201521123097《Java程序设计》第八周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 1.本次作业题集集合 public static List return str; } pub ...
- 201521123056 《Java程序设计》第3周学习总结
1. 本周学习总结 -本周学习了面向对象,学会了如何用Eclipse自动生成setter/getter/toString以及构造有参函数等 2. 书面作业 1.代码阅读 public class Te ...
- 201521123049 《JAVA程序设计》 第12周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 书面作业 将Student对象(属性:int id, String name,int age,doubl ...
- Spring02-AOP
1,动态代理,指的是通过一个代理对象创建需要的业务对象,然后在这个代理对象中统一进行各种操作. 步骤: 1)写一个类实现InvocationHandler接口: 2)创建要代理的对象 2,创建一个简单 ...