Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31583    Accepted Submission(s): 11174

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

 
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
 
Output
Output the maximal summation described above in one line.
 
 
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 
Sample Output
6 8

Hint
Huge input, scanf and dynamic programming is recommended.
 
不加优化:
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<memory.h>
using namespace std;
int dp[][],a[];
int main()
{
int n,m,j,i,k,Max;
while(~scanf("%d%d",&m,&n)){
Max=;
memset(dp,,sizeof(dp));
for(i=;i<=n;i++) scanf("%d",&a[i]);
for(i=;i<=m;i++)
for(j=i+1;j<=n;j++){
dp[i%][j]=dp[i%][j-]+a[j];
for(k=i-;k<=j-;k++)
if(dp[(i-)%][k]+a[j]>dp[i%][j]) dp[i%][j]=dp[(i-)%][k]+a[j];
if(i==m&&dp[i%][j]>Max) Max=dp[i%][j];
}
printf("%d\n",Max);
}
return ;
}
然后发现k的范围【i-1,j-1】之间可以直接记录一个Maxp
emmmmm,以前做过还是搞忘了
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<memory.h>
using namespace std;
int dp[][],a[];
int main()
{
int n,m,j,i,k,Max,Maxp;
while(~scanf("%d%d",&m,&n)){
Max=-;
for(i=;i<=n;i++) scanf("%d",&a[i]);
for(i=;i<=n;i++) dp[][i]=dp[][i]=; for(i=;i<=m;i++) {
Maxp=dp[(i-)%][i-];
dp[i%][i]=dp[(i-)%][i-]+a[i];
for(j=i+;j<=n-m+i;j++){
if(dp[(i-)%][j-]>Maxp) Maxp=dp[(i-)%][j-];
dp[i%][j]=dp[i%][j-]+a[j];
if(Maxp+a[j]>dp[i%][j]) dp[i%][j]=Maxp+a[j];
}
}
for(i=m;i<=n;i++)
if(dp[m%][i]>Max) Max=dp[m%][i];
printf("%d\n",Max);
}
return ;
}

至于此题的数据范围,呵呵,不存在的。

 

HDU1024 DP的优化 最大M子段和问题的更多相关文章

  1. 「学习笔记」wqs二分/dp凸优化

    [学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...

  2. 【BZOJ-4518】征途 DP + 斜率优化

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 230  Solved: 156[Submit][Status][ ...

  3. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  4. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  5. 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼

    目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...

  6. HDU3480_区间DP平行四边形优化

    HDU3480_区间DP平行四边形优化 做到现在能一眼看出来是区间DP的问题了 也能够知道dp[i][j]表示前  i  个节点被分为  j  个区间所取得的最优值的情况 cost[i][j]表示从i ...

  7. 动态规划DP的优化

    写一写要讲什么免得忘记了.DP的优化. 大概围绕着"是什么","有什么用","怎么用"三个方面讲. 主要是<算法竞赛入门经典>里 ...

  8. 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra

    题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...

  9. 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...

随机推荐

  1. 第3阶段——内核启动分析之start_kernel初始化函数(5)

    内核启动分析之start_kernel初始化函数(init/main.c) stext函数启动内核后,就开始进入start_kernel初始化各个函数, 下面只是浅尝辄止的描述一下函数的功能,很多函数 ...

  2. 查看numpy.ndarray的数据类型

    使用ndarray数据时,如果希望知道数据的类型和维数,可以按照以下方法: Xxx.dtype  #xxx表示一个ndarray类型的变量,返回ndarray的数据类型 Xxx.shape  #xxx ...

  3. 我们为什么需要SDN?---致新人

    引言:SDN为什么会出现?是什么原因使得学术界提出SDN?我们为什么需要SDN?如果你刚接触SDN方案时,你一定有这样的疑问.而问题的答案是:我们需要拥有更多可编程能力的网络,来支持快速增长的网络业务 ...

  4. MITNIK ATTACK

    Https 443 http 80 TCP/IP 协议栈:将数据封装包头 传输层报头 Ack回复确认位 FIN结束位 SIN 开始位 RST 重置位 Seq 序号位 网络层报头 目的地址 原地址 报文 ...

  5. 【Alpha阶段】第五次scrum meeting

    一.会议照片 二.会议内容 姓名 学号 负责模块 昨日任务完成度 今日任务 杨爱清 099 界面设计和交互功能 完成 去酷狗选择合适的轻音乐 杨立鑫 100 数据库搭建和其他 完成 继续对数据库进行编 ...

  6. 201521123061 《Java程序设计》第五周学习总结

    201521123061 <Java程序设计>第五周学习总结 1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 1.2 可选:使用常规方法总结其他上课内容. 1.代 ...

  7. 201521123047 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. 答: - 只能有一个父类,即单继承,子类继承父类的全部成员(属性和方法),并可能有自己特有的 ...

  8. update:我的Emacs配置文件

    ;;设置字体用的  防止中文变成无法识别的框框 (set-default-font "Consolas-11") (set-fontset-font "fontset-d ...

  9. 201521123044 《Java程序设计》第12周学习总结

    1. 本章学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 书面作业 将Student对象(属性:int id, String name,int age,doubl ...

  10. 201521123022 《Java程序设计》 第十二周学习总结

    1. 本周学习总结 2. 书面作业 Q1.将Student对象(属性:int id, String name,int age,double grade)写入文件student.data.从文件读出显示 ...