Open-Falcon 监控系统监控 MySQL/Redis/MongoDB 状态监控
背景:
Open-Falcon 是小米运维部开源的一款互联网企业级监控系统解决方案,具体的安装和使用说明请见官网:http://open-falcon.org/,是一款比较全的监控。而且提供各种API,只需要把数据按照规定给出就能出图,以及报警、集群支持等等。
监控:
1) MySQL 收集信息脚本(mysql_monitor.py)
#!/bin/env python
# -*- encoding: utf-8 -*- from __future__ import division
import MySQLdb
import datetime
import time
import os
import sys
import fileinput
import requests
import json
import re class MySQLMonitorInfo(): def __init__(self,host,port,user,password):
self.host = host
self.port = port
self.user = user
self.password = password def stat_info(self):
try:
m = MySQLdb.connect(host=self.host,user=self.user,passwd=self.password,port=self.port,charset='utf8')
query = "SHOW GLOBAL STATUS"
cursor = m.cursor()
cursor.execute(query)
Str_string = cursor.fetchall()
Status_dict = {}
for Str_key,Str_value in Str_string:
Status_dict[Str_key] = Str_value
cursor.close()
m.close()
return Status_dict except Exception, e:
print (datetime.datetime.now()).strftime("%Y-%m-%d %H:%M:%S")
print e
Status_dict = {}
return Status_dict def engine_info(self):
try:
m = MySQLdb.connect(host=self.host,user=self.user,passwd=self.password,port=self.port,charset='utf8')
_engine_regex = re.compile(ur'(History list length) ([0-9]+\.?[0-9]*)\n')
query = "SHOW ENGINE INNODB STATUS"
cursor = m.cursor()
cursor.execute(query)
Str_string = cursor.fetchone()
a,b,c = Str_string
cursor.close()
m.close()
return dict(_engine_regex.findall(c))
except Exception, e:
print (datetime.datetime.now()).strftime("%Y-%m-%d %H:%M:%S")
print e
return dict(History_list_length=0) if __name__ == '__main__': open_falcon_api = 'http://192.168.200.86:1988/v1/push' db_list= []
for line in fileinput.input():
db_list.append(line.strip())
for db_info in db_list:
# host,port,user,password,endpoint,metric = db_info.split(',')
host,port,user,password,endpoint = db_info.split(',') timestamp = int(time.time())
step = 60
# tags = "port=%s" %port
tags = "" conn = MySQLMonitorInfo(host,int(port),user,password)
stat_info = conn.stat_info()
engine_info = conn.engine_info() mysql_stat_list = []
monitor_keys = [
('Com_select','COUNTER'),
('Qcache_hits','COUNTER'),
('Com_insert','COUNTER'),
('Com_update','COUNTER'),
('Com_delete','COUNTER'),
('Com_replace','COUNTER'),
('MySQL_QPS','COUNTER'),
('MySQL_TPS','COUNTER'),
('ReadWrite_ratio','GAUGE'),
('Innodb_buffer_pool_read_requests','COUNTER'),
('Innodb_buffer_pool_reads','COUNTER'),
('Innodb_buffer_read_hit_ratio','GAUGE'),
('Innodb_buffer_pool_pages_flushed','COUNTER'),
('Innodb_buffer_pool_pages_free','GAUGE'),
('Innodb_buffer_pool_pages_dirty','GAUGE'),
('Innodb_buffer_pool_pages_data','GAUGE'),
('Bytes_received','COUNTER'),
('Bytes_sent','COUNTER'),
('Innodb_rows_deleted','COUNTER'),
('Innodb_rows_inserted','COUNTER'),
('Innodb_rows_read','COUNTER'),
('Innodb_rows_updated','COUNTER'),
('Innodb_os_log_fsyncs','COUNTER'),
('Innodb_os_log_written','COUNTER'),
('Created_tmp_disk_tables','COUNTER'),
('Created_tmp_tables','COUNTER'),
('Connections','COUNTER'),
('Innodb_log_waits','COUNTER'),
('Slow_queries','COUNTER'),
('Binlog_cache_disk_use','COUNTER')
] for _key,falcon_type in monitor_keys:
if _key == 'MySQL_QPS':
_value = int(stat_info.get('Com_select',0)) + int(stat_info.get('Qcache_hits',0))
elif _key == 'MySQL_TPS':
_value = int(stat_info.get('Com_insert',0)) + int(stat_info.get('Com_update',0)) + int(stat_info.get('Com_delete',0)) + int(stat_info.get('Com_replace',0))
elif _key == 'Innodb_buffer_read_hit_ratio':
try:
_value = round((int(stat_info.get('Innodb_buffer_pool_read_requests',0)) - int(stat_info.get('Innodb_buffer_pool_reads',0)))/int(stat_info.get('Innodb_buffer_pool_read_requests',0)) * 100,3)
except ZeroDivisionError:
_value = 0
elif _key == 'ReadWrite_ratio':
try:
_value = round((int(stat_info.get('Com_select',0)) + int(stat_info.get('Qcache_hits',0)))/(int(stat_info.get('Com_insert',0)) + int(stat_info.get('Com_update',0)) + int(stat_info.get('Com_delete',0)) + int(stat_info.get('Com_replace',0))),2)
except ZeroDivisionError:
_value = 0
else:
_value = int(stat_info.get(_key,0)) falcon_format = {
'Metric': '%s' % (_key),
'Endpoint': endpoint,
'Timestamp': timestamp,
'Step': step,
'Value': _value,
'CounterType': falcon_type,
'TAGS': tags
}
mysql_stat_list.append(falcon_format) #_key : History list length
for _key,_value in engine_info.items():
_key = "Undo_Log_Length"
falcon_format = {
'Metric': '%s' % (_key),
'Endpoint': endpoint,
'Timestamp': timestamp,
'Step': step,
'Value': int(_value),
'CounterType': "GAUGE",
'TAGS': tags
}
mysql_stat_list.append(falcon_format) print json.dumps(mysql_stat_list,sort_keys=True,indent=4)
requests.post(open_falcon_api, data=json.dumps(mysql_stat_list))
指标说明:收集指标里的COUNTER表示每秒执行次数,GAUGE表示直接输出值。
| 指标 | 类型 | 说明 |
| Undo_Log_Length | GAUGE | 未清除的Undo事务数 |
| Com_select | COUNTER | select/秒=QPS |
| Com_insert | COUNTER | insert/秒 |
| Com_update | COUNTER | update/秒 |
| Com_delete | COUNTER | delete/秒 |
| Com_replace | COUNTER | replace/秒 |
| MySQL_QPS | COUNTER | QPS |
| MySQL_TPS | COUNTER | TPS |
| ReadWrite_ratio | GAUGE | 读写比例 |
| Innodb_buffer_pool_read_requests | COUNTER | innodb buffer pool 读次数/秒 |
| Innodb_buffer_pool_reads | COUNTER | Disk 读次数/秒 |
| Innodb_buffer_read_hit_ratio | GAUGE | innodb buffer pool 命中率 |
| Innodb_buffer_pool_pages_flushed | COUNTER | innodb buffer pool 刷写到磁盘的页数/秒 |
| Innodb_buffer_pool_pages_free | GAUGE | innodb buffer pool 空闲页的数量 |
| Innodb_buffer_pool_pages_dirty | GAUGE | innodb buffer pool 脏页的数量 |
| Innodb_buffer_pool_pages_data | GAUGE | innodb buffer pool 数据页的数量 |
| Bytes_received | COUNTER | 接收字节数/秒 |
| Bytes_sent | COUNTER | 发送字节数/秒 |
| Innodb_rows_deleted | COUNTER | innodb表删除的行数/秒 |
| Innodb_rows_inserted | COUNTER | innodb表插入的行数/秒 |
| Innodb_rows_read | COUNTER | innodb表读取的行数/秒 |
| Innodb_rows_updated | COUNTER | innodb表更新的行数/秒 |
| Innodb_os_log_fsyncs | COUNTER | Redo Log fsync次数/秒 |
| Innodb_os_log_written | COUNTER | Redo Log 写入的字节数/秒 |
| Created_tmp_disk_tables | COUNTER | 创建磁盘临时表的数量/秒 |
| Created_tmp_tables | COUNTER | 创建内存临时表的数量/秒 |
| Connections | COUNTER | 连接数/秒 |
| Innodb_log_waits | COUNTER | innodb log buffer不足等待的数量/秒 |
| Slow_queries | COUNTER | 慢查询数/秒 |
| Binlog_cache_disk_use | COUNTER | Binlog Cache不足的数量/秒 |
使用说明:读取配置到都数据库列表执行,配置文件格式如下(mysqldb_list.txt):
IP,Port,User,Password,endpoint
192.168.2.21,3306,root,123,mysql-21:3306
192.168.2.88,3306,root,123,mysql-88:3306
最后执行:
python mysql_monitor.py mysqldb_list.txt
2) Redis 收集信息脚本(redis_monitor.py)
#!/bin/env python
#-*- coding:utf-8 -*- import json
import time
import re
import redis
import requests
import fileinput
import datetime class RedisMonitorInfo(): def __init__(self,host,port,password):
self.host = host
self.port = port
self.password = password def stat_info(self):
try:
r = redis.Redis(host=self.host, port=self.port, password=self.password)
stat_info = r.info()
return stat_info
except Exception, e:
print (datetime.datetime.now()).strftime("%Y-%m-%d %H:%M:%S")
print e
return dict() def cmdstat_info(self):
try:
r = redis.Redis(host=self.host, port=self.port, password=self.password)
cmdstat_info = r.info('Commandstats')
return cmdstat_info
except Exception, e:
print (datetime.datetime.now()).strftime("%Y-%m-%d %H:%M:%S")
print e
return dict() if __name__ == '__main__': open_falcon_api = 'http://192.168.200.86:1988/v1/push' db_list= []
for line in fileinput.input():
db_list.append(line.strip())
for db_info in db_list:
# host,port,password,endpoint,metric = db_info.split(',')
host,port,password,endpoint = db_info.split(',') timestamp = int(time.time())
step = 60
falcon_type = 'COUNTER'
# tags = "port=%s" %port
tags = "" conn = RedisMonitorInfo(host,port,password) #查看各个命令每秒执行次数
redis_cmdstat_dict = {}
redis_cmdstat_list = []
cmdstat_info = conn.cmdstat_info()
for cmdkey in cmdstat_info:
redis_cmdstat_dict[cmdkey] = cmdstat_info[cmdkey]['calls']
for _key,_value in redis_cmdstat_dict.items():
falcon_format = {
'Metric': '%s' % (_key),
'Endpoint': endpoint,
'Timestamp': timestamp,
'Step': step,
'Value': int(_value),
'CounterType': falcon_type,
'TAGS': tags
}
redis_cmdstat_list.append(falcon_format) #查看Redis各种状态,根据需要增删监控项,str的值需要转换成int
redis_stat_list = []
monitor_keys = [
('connected_clients','GAUGE'),
('blocked_clients','GAUGE'),
('used_memory','GAUGE'),
('used_memory_rss','GAUGE'),
('mem_fragmentation_ratio','GAUGE'),
('total_commands_processed','COUNTER'),
('rejected_connections','COUNTER'),
('expired_keys','COUNTER'),
('evicted_keys','COUNTER'),
('keyspace_hits','COUNTER'),
('keyspace_misses','COUNTER'),
('keyspace_hit_ratio','GAUGE'),
('keys_num','GAUGE'),
]
stat_info = conn.stat_info()
for _key,falcon_type in monitor_keys:
#计算命中率
if _key == 'keyspace_hit_ratio':
try:
_value = round(float(stat_info.get('keyspace_hits',0))/(int(stat_info.get('keyspace_hits',0)) + int(stat_info.get('keyspace_misses',0))),4)*100
except ZeroDivisionError:
_value = 0
#碎片率是浮点数
elif _key == 'mem_fragmentation_ratio':
_value = float(stat_info.get(_key,0))
#拿到key的数量
elif _key == 'keys_num':
_value = 0
for i in range(16):
_key = 'db'+str(i)
_num = stat_info.get(_key)
if _num:
_value += int(_num.get('keys'))
_key = 'keys_num'
#其他的都采集成counter,int
else:
try:
_value = int(stat_info[_key])
except:
continue
falcon_format = {
'Metric': '%s' % (_key),
'Endpoint': endpoint,
'Timestamp': timestamp,
'Step': step,
'Value': _value,
'CounterType': falcon_type,
'TAGS': tags
}
redis_stat_list.append(falcon_format) load_data = redis_stat_list+redis_cmdstat_list
print json.dumps(load_data,sort_keys=True,indent=4)
requests.post(open_falcon_api, data=json.dumps(load_data))
指标说明:收集指标里的COUNTER表示每秒执行次数,GAUGE表示直接输出值。
| 指标 | 类型 | 说明 |
| connected_clients | GAUGE | 连接的客户端个数 |
| blocked_clients | GAUGE | 被阻塞客户端的数量 |
| used_memory | GAUGE | Redis分配的内存的总量 |
| used_memory_rss | GAUGE | OS分配的内存的总量 |
| mem_fragmentation_ratio | GAUGE | 内存碎片率,used_memory_rss/used_memory |
| total_commands_processed | COUNTER | 每秒执行的命令数,比较准确的QPS |
| rejected_connections | COUNTER | 被拒绝的连接数/秒 |
| expired_keys | COUNTER | 过期KEY的数量/秒 |
| evicted_keys | COUNTER | 被驱逐KEY的数量/秒 |
| keyspace_hits | COUNTER | 命中KEY的数量/秒 |
| keyspace_misses | COUNTER | 未命中KEY的数量/秒 |
| keyspace_hit_ratio | GAUGE | KEY的命中率 |
| keys_num | GAUGE | KEY的数量 |
| cmd_* | COUNTER | 各种名字都执行次数/秒 |
使用说明:读取配置到都数据库列表执行,配置文件格式如下(redisdb_list.txt):
IP,Port,Password,endpoint
192.168.1.56,7021,zhoujy,redis-56:7021
192.168.1.55,7021,zhoujy,redis-55:7021
最后执行:
python redis_monitor.py redisdb_list.txt
3) MongoDB 收集信息脚本(mongodb_monitor.py)
...后续添加
4)其他相关的监控(需要装上agent),比如下面的指标:
| 告警项 | 触发条件 | 备注 |
|---|---|---|
| load.1min | all(#3)>10 | Redis服务器过载,处理能力下降 |
| cpu.idle | all(#3)<10 | CPU idle过低,处理能力下降 |
| df.bytes.free.percent | all(#3)<20 | 磁盘可用空间百分比低于20%,影响从库RDB和AOF持久化 |
| mem.memfree.percent | all(#3)<15 | 内存剩余低于15%,Redis有OOM killer和使用swap的风险 |
| mem.swapfree.percent | all(#3)<80 | 使用20% swap,Redis性能下降或OOM风险 |
| net.if.out.bytes | all(#3)>94371840 | 网络出口流量超90MB,影响Redis响应 |
| net.if.in.bytes | all(#3)>94371840 | 网络入口流量超90MB,影响Redis响应 |
| disk.io.util | all(#3)>90 | 磁盘IO可能存负载,影响从库持久化和阻塞写 |
相关文档:
https://github.com/iambocai/falcon-monit-scripts(redis monitor)
https://github.com/ZhuoRoger/redismon(redis monitor)
Open-Falcon 监控系统监控 MySQL/Redis/MongoDB 状态监控的更多相关文章
- 分布式监控系统Zabbix3.4-针对MongoDB性能监控操作笔记
公司在IDC机房的一台服务器上部署了MongoDB,由于所存储的业务数据比较重要,所以对MongoDB的监控显得尤为重要!Zabbix监控MongoDB性能的原理:通过echo "db.se ...
- ELK监控系统nginx / mysql慢日志
ELK监控系统nginx / mysql慢日志 elasticsearch logstash kibana ELK监控系统nginx日志 1.环境准备 centos6.8_64 mini IP:192 ...
- python mysql redis mongodb selneium requests二次封装为什么大都是使用类的原因,一点见解
1.python mysql redis mongodb selneium requests举得这5个库里面的主要被用户使用的东西全都是面向对象的,包括requests.get函数是里面每次都是实例 ...
- centos7.4下搭建JDK+Tomcat+Nginx+Mysql+redis+Mongodb+maven+Git+Jenkins
先干两件大事!先干两件大事!先干两件大事! 1.关闭selinux [root@mycentos ~]# vi /etc/selinux/config SELINUX=disabled 2.关闭防火墙 ...
- 搭建前端监控系统(二)JS错误监控篇
===================================================================== 前端性能监控系统: DEMO地址 GIT代码仓库地址 ...
- 监控MySQL|Redis|MongoDB的执行语句(go-sniffer)
上节回顾:https://www.cnblogs.com/dotnetcrazy/p/9986873.html 以CentOS为例: 1.环境 PS:如果不需要Golang环境,可以编译后把执行文件c ...
- Python操作MySQL+Redis+MongoDB
1-1 python操作三大主流数据库导学篇 1-2 数据库简介 1-3 MySQL简介 2-1 MySQL安装及配置 2-2 MySQL图形化管理工具 2-3 SQL语法基础-创建并使用数据库 2- ...
- python连接MySQL/redis/mongoDB数据库的简单整理
python连接mysql 用python操作mysql,你必须知道pymysql 代码示意: import pymysql conn = pymysql.connect(host='127.0.0. ...
- zabbix的搭建及操作(3)监控 MySQL 及 HTTP 状态监控
书接上回 -- 详情点击 Server端以配置好 mariadb(MySQL) 及 http 服务 Zabbix实现监控 mysql 数据库 server服务器端配置 vim /usr/local/z ...
随机推荐
- apche基于域名,ip,端口的配置
基于域名的服务端: 13 iptables -F 14 setenforce 0 15 ifconfig eth0 172.18.43.146 16 yum -y install bind bind- ...
- 自己用到的相关Linux命令,谨以记录
1.查看磁盘使用情况 df -h(方便看些) df -l(字节大小,不方便看) 2.查看根目录下文件/文件夹大小 du -sh /*(/*表示根目录下所有文件) 3.查看文件列表时显示文件大小 ll ...
- 【CNMP系列】CentOS7.0下安装PHP5.6.30服务
上一节我们讲过了如何在CentOS7.0下安装MySql服务,如果没有看到欢迎页面的朋友,可以加我的个人微信详聊:litao514148204 附上一节地址:http://www.cnblogs.co ...
- 在IIS中部署Asp.net Mvc
概述: 最近在做一个MVC 3的项目,在部署服务器时破费了一番功夫,特将过程整理下来,希望可以帮到大家! 本文主要介绍在IIS5.1.IIS6.0.IIS7.5中安装配置MVC 3的具体办法! 正文: ...
- Material Design学习-----SnackBar
SnackBar是一个和Toast类似的空间,用于弹出提示作用,但是相比于Toast而已,SnackBar会有一个不错的动画效果,同时当手指完成屏幕中其他操作的时候,SnackBar会立即消失.同时可 ...
- rhel 6.7 离线安装docker
本机系统信息 [test@rhel67temp ~]$ uname -a Linux rhel67temp 2.6.32-573.el6.x86_64 #1 SMP Wed Jul 1 18:23:3 ...
- 安装Apache遇到的一点问题
很久以前就安装好了Apache(2.2),现在再用时突然出现了问题: 以http://127.0.0.1/exercise/x.php的方式访问文件是正常的,但是要进入phpMyAdmin建表发现不能 ...
- DOM基础(一)
在我们刚刚学JavaScript的时候,就应该听说过,JavaScript是由三部分组成的.分别是ECMAScript,DOM和BOM组成的.ECMAScript是JavaScript的核心,它描述了 ...
- AJAX遮罩实例
function transferip() { var site_list=$("textarea[name='Oldsite']").val(); var ip_list=$(& ...
- java基础:数组的复制