【数论·欧拉函数】SDOI2008仪仗队
题目描述
作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图)。 现在,C君希望你告诉他队伍整齐时能看到的学生人数。
输入输出格式
输入格式:
共一个数N
输出格式:
共一个数,即C君应看到的学生人数。
输入输出样例
4
9
说明
【数据规模和约定】
对于 100% 的数据,1 ≤ N ≤ 40000
题解
首先,我们很容易发现,所有能看到的点都满足一点:
它的横纵坐标互质(C君在(0,0))
所以显然能看到的点的个数就是1~n-1的欧拉函数之和乘二加一
代码如下:
#include<iostream>
#include<cstdio>
using namespace std; int n;
long long ans;
int phi[]; int main()
{
scanf("%d",&n);
phi[]=;
for(int i=;i<=n;++i)
{
if(!phi[i])
for(int j=i;j<=n;j+=i)
{
if(!phi[j])phi[j]=j;
phi[j]=phi[j]/i*(i-); //等同于phi[j]=phi[j]*(i-1)/i
//即为 phi[j]=j*(1-1/k1)(1-1/k2)....
}
}
for(int i=;i<n;++i)
ans+=phi[i];
printf("%lld",ans*+);
}
【数论·欧拉函数】SDOI2008仪仗队的更多相关文章
- 欧拉函数 || [SDOI2008]仪仗队 || BZOJ 2190 || Luogu P2158
题面:P2158 [SDOI2008]仪仗队 题解: 显然除了(1,1),(0,1),(1,0)三个点外,对于其他点(x,y)只要满足gcd(x,y)==1就可以被看到 然后这些点是关于y=x对称的, ...
- 数论-欧拉函数-LightOJ - 1370
我是知道φ(n)=n-1,n为质数 的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数
[bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...
- 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法
http://www.lydsy.com/JudgeOnline/problem.php?id=2190 裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- Codeforces_776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- Codeforces 776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- 数论 - 欧拉函数模板题 --- poj 2407 : Relatives
Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11372 Accepted: 5544 Descri ...
随机推荐
- HVR又一次load的时候须要将schedule suspend掉
今天在进行HVR的又一次load的时候.报错了: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fi ...
- Laravel技巧之记录多日志
相信每个小伙伴在使用laravel的时候都会记录日志.查看日志.那么问题来了,比如我在对接zabbix接口的时候,使用 Log::info() 会让日志全部记录在 storage/logs/larav ...
- HTTP响应状态码含义参考
1xx:信息 100 Continue服务器仅接收到部分请求,但是一旦服务器并没有拒绝该请求,客户端应该继续发送其余的请求.101 Switching Protocols服务器转换协议:服务器将遵从客 ...
- 稀疏分解中的MP与OMP算法
MP:matching pursuit匹配追踪 OMP:正交匹配追踪 主要介绍MP与OMP算法的思想与流程,解释为什么需要引入正交? !!今天发现一个重大问题,是在读了博主的正交匹配追踪(OMP)在稀 ...
- 系统自带vim命令学习教程
[环境] [干货分享] vim或者vi命令在很多linux环境中自带一款学习教程,其教程说明语言还是随系统变化. 输入vimtutor这个命令会打开一款学习神器. 打开之后显示如下,vimtutor一 ...
- 基于权限安全框架Shiro的登录验证功能实现
目前在企业级项目里做权限安全方面喜欢使用Apache开源的Shiro框架或者Spring框架的子框架Spring Security. Apache Shiro是一个强大且易用的Java安全框架,执行身 ...
- Java Web 单表操作
为了测试 JavaWeb 项目,我做了一个关于一张表的更新操作. 1.加群 如果需要本项目的源码,欢迎加群:438255459 2.解压 解压开这个包,然后用 Eclipse 打开项目,至于涉及到 T ...
- Flink升级到1.4版本遇到的坑
Flink 1.4没出来以前,一直使用Flink 1.3.2,感觉还算稳定,最近将运行环境升级到1.4,遇到了一些坑: 1.需要将可运行程序,基于1.4.0重新编译一次 2.对比了一下flink-co ...
- SpringMVC框架(二)注解 (转)
原文地址:http://www.cnblogs.com/yjq520/p/6734422.html 1.@Controller @Controller 用于标记在一个类上,使用它标记的类就是一个Spr ...
- IOS学习1——IOS应用程序的生命周期及基本架构
一.应用程序的状态和多任务 有时系统会从app一种状态切换另一种状态来响应系统发生的事件.例如,当用户按下home键.电话打入.或其他中断发生时,当前运行的应用程序会切换状态来响应.应用程序的状态有以 ...