【机器学习PAI实践一】搭建心脏病预测案例
一、背景
心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用。本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例。
二、数据集介绍
数据源: UCI开源数据集heart_disease
针对美国某区域的心脏病检查患者的体测数据,共303条数据。具体字段如下表:
| 字段名 | 含义 | 类型 | 描述 |
|---|---|---|---|
| age | 年龄 | string | 对象的年龄,数字表示 |
| sex | 性别 | string | 对象的性别,female和male |
| cp | 胸部疼痛类型 | string | 痛感由重到无typical、atypical、non-anginal、asymptomatic |
| trestbps | 血压 | string | 血压数值 |
| chol | 胆固醇 | string | 胆固醇数值 |
| fbs | 空腹血糖 | string | 血糖含量大于120mg/dl为true,否则为false |
| restecg | 心电图结果 | string | 是否有T波,由轻到重为norm、hyp |
| thalach | 最大心跳数 | string | 最大心跳数 |
| exang | 运动时是否心绞痛 | string | 是否有心绞痛,true为是,false为否 |
| oldpeak | 运动相对于休息的ST depression | string | st段压数值 |
| slop | 心电图ST segment的倾斜度 | string | ST segment的slope,程度分为down、flat、up |
| ca | 透视检查看到的血管数 | string | 透视检查看到的血管数 |
| thal | 缺陷种类 | string | 并发种类,由轻到重norm、fix、rev |
| status | 是否患病 | string | 是否患病,buff是健康、sick是患病 |
三、数据探索流程
数据挖掘流程如下:
整体实验流程: 
1.数据预处理
数据预处理也叫作数据清洗,主要在数据进入算法流程前对数据进行去噪、填充缺失值、类型变换等操作。本次实验的输入数据包括14个特征和1个目标队列。需要解决的场景是根据用户的体检指标预测是否会患有心脏病,每个样本只有患病或不患病两种,是分类问题。因为本次分类实验选用的是线性模型逻辑回归,要求输入的特征都是double型的数据。
输入数据展示: 
我们看到有很多数据是文字描述的,在数据预处理的过程中我们需要根据每个字段的含义将字符型转为数值。
1)二值类的数据
二值类的比较容易转换,如sex字段有两种表现形式female和male,我们可以将female表示成0,把male表示成1。
2)多值类的数据
比如cp字段,表示胸部的疼痛感,我们可以通过疼痛的由轻到重映射成0~3的数值。
数据的预处理通过sql脚本来实现,具体请参考SQL脚本-1组件,
select age,
(case sex when 'male' then 1 else 0 end) as sex,
(case cp when 'angina' then 0 when 'notang' then 1 else 2 end) as cp,
trestbps,
chol,
(case fbs when 'true' then 1 else 0 end) as fbs,
(case restecg when 'norm' then 0 when 'abn' then 1 else 2 end) as restecg,
thalach,
(case exang when 'true' then 1 else 0 end) as exang,
oldpeak,
(case slop when 'up' then 0 when 'flat' then 1 else 2 end) as slop,
ca,
(case thal when 'norm' then 0 when 'fix' then 1 else 2 end) as thal,
(case status when 'sick' then 1 else 0 end) as ifHealth
from ${t1};
2.特征工程
特征工程主要是包括特征的衍生、尺度变化等。本例中有两个组件负责特征工程的部分。
1)过滤式特征选择
主要是通过这个组件判断每个特征对于结果的影响,通过信息熵和基尼系数来表示,可以通过查看评估报告来显示最终的结果。 
2)归一化
因为本次实验选择的是通过逻辑回归二分类来进行模型训练,需要每个特征去除量纲的影响。归一化的作用是将每个特征的数值范围变为0到1之间。归一化的公式为result=(val-min)/(max-min)。
归一化结果: 
3.模型训练和预测
本次实验是监督学习,因为我们已经知道每个样本是否患有心脏病,所谓监督学习就是已知结果来训练模型。解决的问题是预测一组用户是否患有心脏病。
1)拆分
首先通过拆分组件将数据分为两部分,本次实验按照训练集和预测集7:3的比例拆分。训练集数据流入逻辑回归二分类组件用来训练模型,预测集数据进入预测组件。
2)逻辑回归二分类
逻辑回归是一个线性模型,在这里通过计算结果的阈值实现分类。具体的算法详情推荐大家在网上或者书籍中自行了解。逻辑回归训练好的模型可以在模型页签中查看。 
3)预测
预测组件的两个输入分别是模型和预测集。预测结果展示的是预测数据、真实数据、每组数据不同结果的概率。
4.评估
通过混淆矩阵组件可以评估模型的准确率等参数,
通过此组件可以方便的通过预测的准确性来评估模型。
四.总结
通过以上数据探索的流程我们可以得到以下的结论。
1)特征权重
我们可以通过过滤式特征选择得到每个特征对于结果的权重。
-可以看出thalach(心跳数)对于是否发生心脏病影响最大。
-性别对于心脏病没有影响
2)模型效果
通过上文提供的14个特征,可以达到百分之八十多的心脏病预测准确率。模型可以用来做预测,辅助医生预防和治疗心脏病。
与我交流请关注微信公众号:“凡人机器学习”

【机器学习PAI实践一】搭建心脏病预测案例的更多相关文章
- [置顶]
【机器学习PAI实践九】如何通过机器学习实现云端实时心脏状况监测
背景 我们通过之前的案例已经为大家介绍了如何通过常规的体检数据预测心脏病的发生,请见http://blog.csdn.net/buptgshengod/article/details/53609878 ...
- 【机器学习PAI实践十二】机器学习算法基于信用卡消费记录做信用评分
背景 如果你是做互联网金融的,那么一定听说过评分卡.评分卡是信用风险评估领域常用的建模方法,评分卡并不简单对应于某一种机器学习算法,而是一种通用的建模框架,将原始数据通过分箱后进行特征工程变换,继而应 ...
- [置顶]
【机器学习PAI实践五】机器学习眼中的《人民的名义》
一.背景 最近热播的反腐神剧"人民的名义"掀起来一波社会舆论的高潮,这部电视剧之所能得到广泛的关注,除了老戏骨们精湛的演技,整部剧出色的剧本也起到了关键的作用.笔者在平日追剧之余, ...
- [置顶]
【机器学习PAI实践六】金融贷款发放预测
一.背景 很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还.农业贷款发放问题是一个典型的数据挖掘问题.贷款发放人通过往年的数据,包括贷款人的年收入.种植的作物 ...
- [置顶]
【机器学习PAI实践十一】机器学习PAI为你自动写歌词,妈妈再也不用担心我的freestyle了(提供数据、代码
背景 最近互联网上出现一个热词就是"freestyle",源于一个比拼rap的综艺节目.在节目中需要大量考验选手的freestyle能力,freestyle指的是rapper即兴的 ...
- 【机器学习PAI实践二】人口普查统计
一.背景 感谢大家关注玩转数据系列文章,我们希望通过在阿里云机器学习平台上提供demo数据并搭建相关的实验流程的方式来帮助大家学习如何通过算法来挖掘数据中的价值.本系列文章包含详细的实验流程以及相关的 ...
- 【机器学习PAI实践十】深度学习Caffe框架实现图像分类的模型训练
背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Te ...
- [置顶]
【机器学习PAI实践三】雾霾成因分析
一.背景 如果要人们评选当今最受关注话题的top10榜单,雾霾一定能够入选.如今走在北京街头,随处可见带着厚厚口罩的人在埋头前行,雾霾天气不光影响了人们的出行和娱乐,对于人们的健康也有很大危害.本文通 ...
- [置顶]
【机器学习PAI实践四】如何实现金融风控
(本文数据为虚构,仅供实验) 一.背景 本文将针对阿里云平台上图算法模块来进行实验.图算法一般被用来解决关系网状的业务场景.与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱.图算法更多 ...
随机推荐
- 【LeetCode】144. Binary Tree Preorder Traversal
题目: Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binar ...
- ajax数据请求5(php格式)
ajax数据请求5(php格式): <!DOCTYPE html> <html> <head> <meta charset="UTF-8" ...
- (cljs/run-at (JSVM. :all) "一起实现柯里化")
前言 习惯了Ramda.js就会潜意识地认为函数均已柯里化,然后就可以随心所欲的用函数生成函数,或者使用compose组合多个函数来生成一个新函数.如下 const f = a => b =& ...
- Bootstrap警告框
前面的话 在网站中,网页总是需要和用户一起做沟通与交流.特别是当用户操作上下文为用户提供一些有效的警示框,比如说告诉用户操作成功.操作错误.提示或者警告等.在Bootstrap框架有一个独立的组件,实 ...
- kbengine_js_plugins 在Cocos Creator中适配
kbengine_js_plugins 改动(2017/7/6) 由于Cocos Creator使用严格模式的js,而原本的kbengine_js_plugins是非严格模式的,因此为了兼容和方 便C ...
- VB6之借助zlib实现gzip解压缩
这是个简版的,可以拿来做下网页gzip的解压缩,整好我的webserver还不支持这个,有时间了就加上. zlib.dll下载请点击我! 模块zlib.bas的代码如下: 'code by lichm ...
- SpringEL 表达式错误记录
原因暂时未知....
- python爬虫主要就是五个模块:爬虫启动入口模块,URL管理器存放已经爬虫的URL和待爬虫URL列表,html下载器,html解析器,html输出器 同时可以掌握到urllib2的使用、bs4(BeautifulSoup)页面解析器、re正则表达式、urlparse、python基础知识回顾(set集合操作)等相关内容。
本次python爬虫百步百科,里面详细分析了爬虫的步骤,对每一步代码都有详细的注释说明,可通过本案例掌握python爬虫的特点: 1.爬虫调度入口(crawler_main.py) # coding: ...
- UWP:使用Behavior实现Button点击动态效果
废话不多说,先上效果 没有做成安卓那种圆形的原因是...人家真的不会嘛... 好了下面是正文: 首先在工程中引入Behavior的库,我们使用Nuget. 在项目->引用上点击右键,点击管理Nu ...
- iOS App内存优化之 解决UIImagePickerController的图片对象占用RAM过高问题
这个坑会在特定的情况下特别明显: 类似朋友圈的添加多张本地选择\拍照 的图片 并在界面上做一个预览功能 由于没有特别的相机\相册需求,则直接使用系统自带的UIImagePickerController ...