线性回归、对数几率回归模型,本质上是单个神经元。计算输入特征加权和。偏置视为每个样本输入特征为1权重,计算特征线性组合。激活(传递)函数 计算输出。线性回归,恒等式(值不变)。对数几率回归,sigmoid。输入->权重->求和->传递->输出。softmax分类含C个神经元,每个神经元对应一个输出类别。

XOR异或运算,无法通过线性模型解决。sigmoido类型神经元要求数据线性可分。2D数据存在直线,高维数据存在超平面,把不同类别样本分隔。

在神经网络输入和输出之间插入更多神经元,解决非线性可分问题。输入层->隐含层(hidden layer)->输出层->输出。隐含层使网络可以对输入数据提出更多问题。隐含层每个神经元对应一个问题,依据问题回答最终决定输出结果。隐含层在数据分布图允许神经网络绘制以一条以上分隔线。每条分隔线向输入数据划分提出问题,所有相等输出划分到单个区域。深度学习,添加更多隐含层,可采用不同类型连接,使用不同激活函数。

梯度下降法,找到函数极值点。学习,改进模型参数,大量训练,损失最小化。梯度下降法寻找损失函数极值点。梯度输出偏导数向量,每个分量对应函数对输入向量相应分量偏导。求偏导,当前变量外所有变量视为常数,用单变量求导法则。偏导数度量函数输出相对特定输入变量的变化率,当输入变量值变化,输出值的变化。损失函数输入变量指模型权值,不是实际数据集输入特征。相对于推断模型每个权值。
梯度输出向量表明每个位置损失函数增长最快方向,在函数每个位置向哪个方向移动函数值可增长。点表示权值当前值。梯度向右箭头表示为增加损失需向右移动,简头长度表示向右移动函数值增长量。反方向移动,损失函数值减少。直到梯度模为0,达到损失函数极小值点。
学习速率(learning rate)缩放梯度。梯度向量长度在损失函数单元中,缩放与权值相加。学习速率是超参数(hyperparameter),模型手工可配置设置,需指定正确值。太小,需要多轮迭代。太大,超调(overshooting),永远找不到极小值点。用tf.summary.scalar函数在TensorBoard查看损失函数值变化曲线。
局部极值点问题,通过权值随机初始化,增加靠近全局最优点附近开始下降机会。损失函数所有极值点接近等价。
tf.gradients方法,符号计算推导指定流图步骤梯度以张量输出。梯度下降法取决输入数据形状及问题特点。

误差反向传播算法,计算损失函数相对网络权值偏导,每层导数都是后一层导数与前一层导输出积。前馈,从输入开始,逐一计算隐含层输出,直到输出层。计算导数,从输出层逐一反向传播。复用所有已完成计算元素。

Sigmoid隐含层,softmax输出层以及带反向传播梯度下降,是最基础构件。

参考资料:
《面向机器智能的TensorFlow实践》

欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz

学习笔记TF011:多层神经网络的更多相关文章

  1. CNN学习笔记:卷积神经网络

    CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...

  2. thinkphp学习笔记7—多层MVC

    原文:thinkphp学习笔记7-多层MVC ThinkPHP支持多层设计. 1.模型层Model 使用多层目录结构和命名规范来设计多层的model,例如在项目设计中如果需要区分数据层,逻辑层,服务层 ...

  3. 【学习笔记】循环神经网络(RNN)

    前言 多方寻找视频于博客.学习笔记,依然不能完全熟悉RNN,因此决定还是回到书本(<神经网络与深度学习>第六章),一点点把啃下来,因为这一章对于整个NLP学习十分重要,我想打好基础. 当然 ...

  4. [DL学习笔记]从人工神经网络到卷积神经网络_1_神经网络和BP算法

    前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工 ...

  5. 学习笔记TF026:多层感知机

    隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需 ...

  6. 深度学习笔记 (一) 卷积神经网络基础 (Foundation of Convolutional Neural Networks)

    一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“ ...

  7. 【学习笔记】卷积神经网络 (CNN )

    前言 对于卷积神经网络(cnn)这一章不打算做数学方面深入了解,所以只是大致熟悉了一下原理和流程,了解了一些基本概念,所以只是做出了一些总结性的笔记. 感谢B站的视频 https://www.bili ...

  8. 学习笔记TF027:卷积神经网络

    卷积神经网络(Convolutional Neural Network,CNN),可以解决图像识别.时间序列信息问题.深度学习之前,借助SIFT.HoG等算法提取特征,集合SVM等机器学习算法识别图像 ...

  9. 学习笔记CB010:递归神经网络、LSTM、自动抓取字幕

    递归神经网络可存储记忆神经网络,LSTM是其中一种,在NLP领域应用效果不错. 递归神经网络(RNN),时间递归神经网络(recurrent neural network),结构递归神经网络(recu ...

随机推荐

  1. 手机自动化测试:Appium源码分析之跟踪代码分析五

    手机自动化测试:Appium源码分析之跟踪代码分析五   手机自动化测试是未来很重要的测试技术,作为一名测试人员应该熟练掌握,POPTEST举行手机自动化测试的课程,希望可以训练出优秀的手机测试开发工 ...

  2. 转接IC整理汇总 转接芯片大全

    转接口IC大全,信号转换大全EDP输出信号NCS8801 LVDS转EDP.RGB转EDP 封装QFN56 最大分辨率2560*1600用于手机.平板.转接板.液晶驱动板.广告机.可视门铃等等控制器到 ...

  3. 常用linux命令及其设置

    完成一个运维的工作,以下的命令和配置是经常会用到的,总结一下工作以来的命令和配置 linux常用命令 linux客户端挂接(mount)其他linux系统或UNIX系统的NFS共享 $ mkdir – ...

  4. mysql 分析第一步

    分析mysql 慢的原因    思路 通过脚本观察 status -->看是否会出现周期性波动 一般由访高峰或缓存崩溃引起   加缓存更改 缓存失效策略 使失效时间分散 或夜间定时失效 --&g ...

  5. Centos7部署Zabbix

    转载于http://www.cnblogs.com/xqzt/p/5124894.html,更正了部分错误,并增加了个别问题处理办法. 一.Zabbix简介 zabbix是一个基于WEB界面的提供分布 ...

  6. Java环境变量详解

    自己总结些再加抄点: 安装JDK后要配置环境变量,主要有三个: 1 JAVA_HOME ->为JDK的安装目录,如:F:\JAVA\jdk1.6.0_04 2 CLASSPATH ->到哪 ...

  7. 【Java 并发】详解 ThreadPoolExecutor

    前言 线程池是并发中一项常用的优化方法,通过对线程复用,减少线程的创建,降低资源消耗,提高程序响应速度.在 Java 中我们一般通过 Exectuors 提供的工厂方法来创建线程池,但是线程池的最终实 ...

  8. css3常用方法以及css3选择器

    最重要的 CSS3 模块包括: 选择器 框模型 背景和边框 文本效果 2D/3D 转换 动画 多列布局 用户界面   CSS3 边框   CSS3 边框 通过 CSS3,您能够创建圆角边框,向矩形添加 ...

  9. 在线恶意软件和URL分析集成框架 – MalSub

    malsub是一个基于Python 3.6.x的框架,它的设计遵循了当前最流行的互联网软件架构RESTful架构,并通过其RESTful API应用程序编程接口(API),封装了多个在线恶意软件和UR ...

  10. git 利用分支概念实现一个仓库管理两个项目

    需求描述:开发了一个网站,上线之际,突然另一个客户说也想要个一样的网站,但网站的logo和内部展示图片需要替换一下,也就是说大部分的后台业务逻辑代码都是一致的,以后升级时功能也要保持一致:刚开始想反正 ...