前面我们谈到了排序二叉树,还没有熟悉的同学可以看一下这个,二叉树基本操作二叉树插入二叉树删除1删除2删除3。但是排序二叉树也不是没有缺点,比如说,如果我们想在排序二叉树中删除一段数据的节点怎么办呢?按照现在的结构,我们只能一个一个数据查找验证,首先看看在不在排序二叉树中,如果在那么删除;如果没有这个数据,那么继续查找。那么有没有方法,可以保存当前节点的下一个节点是什么呢?这样就不再需要进行无谓的查找了。其实这样的方法是存在的,那就是在排序二叉树中添加向前向后双向节点。
    现在数据结构定义如下:

typedef struct _TREE_NODE
{
int data;
struct _TREE_NODE* prev;
struct _TREE_NODE* next;
struct _TREE_NODE* left;
struct _TREE_NODE* right;
}TREE_NODE;

拿节点的添加来说,我们可能需要添加prev、next的处理步骤。

void set_link_for_insert(TREE_NODE* pParent, TREE_NODE* pNode)
{
if(NULL == pParent || NULL == pNode)
return; if(pNode = pParent->left){
pNode->prev = pParent->prev;
if(pParent->prev)
pParent->prev->next = pNode;
pNode->next = pParent;
pParent->prev = pNode;
}else{
pNode->next = pParent->next;
if(pParent->next)
pParent->next->prev = pNode;
pNode->prev = pParent;
pParent->next = pNode;
} return;
} STATUS add_node_into_tree(TREE_NODE** ppTreeNode, int data)
{
TREE_NODE* pHead;
TREE_NODE* pNode; if(NULL == ppTreeNode)
return FALSE; if(NULL == *ppTreeNode){
*ppTreeNode = create_new_node(data);
return TRUE;
} if(NULL != find_data_in_tree(*ppTreeNode, data))
return FALSE; pHead = *ppTreeNode;
while(1){
if(data < pHead->data){
if(pHead->left){
pHead = pHead->left;
}else{
pNode = create_new_node(data);
pHead->left = pNode;
break;
}
}else{
if(pHead->right){
pHead = pHead->right;
}else{
pNode = create_new_node(data);
pHead->right = pNode;
break;
}
}
} set_link_for_insert(pHead, pNode);
return TRUE;
}

添加节点如此,删除节点的工作也不能马虎。

void set_link_for_delete(TREE_NODE* pNode)
{
if(pNode->prev){
if(pNode->next){
pNode->prev->next = pNode->next;
pNode->next->prev = pNode->prev;
}else
pNode->prev->next = NULL;
}else{
if(pNode->next)
pNode->next->prev = NULL;
}
} TREE_NODE* _delete_node_from_tree(TREE_NODE* root, TREE_NODE* pNode)
{
TREE_NODE* pLeftMax;
TREE_NODE* pLeftMaxParent;
TREE_NODE* pParent = get_parent_of_one(root, pNode); if(NULL == pNode->left && NULL == pNode->right){
if(pNode == pParent->left)
pParent->left = NULL;
else
pParent->right = NULL;
}else if(NULL != pNode->left && NULL == pNode->right){
if (pNode == pParent->left)
pParent->left = pNode->left;
else
pParent->right = pNode->left;
}else if(NULL == pNode->left && NULL != pNode->right){
if(pNode == pParent->left)
pParent->left = pNode->right;
else
pParent->right = pNode->right;
}else{
pLeftMax = get_max_node_of_one(pNode->left);
if(pLeftMax == pNode->left){
pNode->left->right = pNode->right;
if(pNode == pParent->left)
pParent->left = pNode->left;
else
pParent->right = pNode->left;
}else{
pLeftMaxParent = get_parent_of_one(root, pLeftMax);
pNode->data = pLeftMax->data;
pLeftMaxParent->right = NULL;
pNode = pLeftMax;
}
} return pNode;
} STATUS delete_node_from_tree(TREE_NODE** ppTreeNode, int data)
{
TREE_NODE* pNode;
TREE_NODE* pLeftMax;
TREE_NODE* pLeftMaxParent; if(NULL == ppTreeNode || NULL == *ppTreeNode)
return FALSE; if(NULL == (pNode = find_data_in_tree(*ppTreeNode, data)))
return FALSE; if(pNode == *ppTreeNode){
if(NULL == pNode->left && NULL == pNode->right)
*ppTreeNode = NULL;
else if(NULL != pNode->left && NULL == pNode->right)
*ppTreeNode = pNode->left;
else if(NULL == pNode->left && NULL != pNode->right)
*ppTreeNode = pNode->right;
else {
pLeftMax = get_max_node_of_one(pNode->left);
if(pNode->left == pLeftMax){
pNode->left->right = pNode->right;
*ppTreeNode = pNode->left;
}else{
pLeftMaxParent = get_parent_of_one(*ppTreeNode, pLeftMax);
pNode->data = pLeftMax->data;
pLeftMaxParent->right = NULL;
pNode = pLeftMax;
}
} goto final;
} pNode = _delete_node_from_tree(*ppTreeNode, pNode); final:
set_link_for_delete(pNode); free(pNode);
return TRUE;
}

其中,寻找最大值节点和寻找父节点的代码如下所示:

TREE_NODE* get_max_node_of_one(TREE_NODE* pNode)
{
if(NULL == pNode)
return NULL; while(pNode->right)
pNode = pNode->right; return pNode;
} TREE_NODE* get_parent_of_one(TREE_NODE* root, TREE_NODE* pNode)
{
if(NULL == root || NULL == pNode)
return NULL; while(root){
if(pNode == root->left || pNode == root->right)
return root;
else if(pNode->data < root->data)
root = root->left;
else
root = root->right;
} return NULL;
}

总结:
    (1)排序二叉树的序列化关键就是在二叉树节点添加前向指针和后继指针
    (2)排序二叉树是空间换时间的典型案例
    (3)排序二叉树是很多结构的基础,写多少遍都不为多,有机会朋友们应该多加练习
    (4)测试用例的编写是代码编写的关键,编写程序的目的就是为了消除bug,特别是低级bug

c++(排序二叉树线索化)的更多相关文章

  1. 数据结构之二叉树篇卷四 -- 二叉树线索化(With Java)

    一.线索二叉树简介 二叉树本身是一种非线性结构,然而当你对二叉树进行遍历时,你会发现遍历结果是一个线性序列.这个序列中的节点存在前驱后继关系.因此,如何将这种前驱后继信息赋予给原本的二叉树呢?这就是二 ...

  2. 记忆化搜索 codevs 2241 排序二叉树

    codevs 2241 排序二叉树 ★   输入文件:bstree.in   输出文件:bstree.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 一个边长为n的正三 ...

  3. 算法与数据结构(三) 二叉树的遍历及其线索化(Swift版)

    前面两篇博客介绍了线性表的顺序存储与链式存储以及对应的操作,并且还聊了栈与队列的相关内容.本篇博客我们就继续聊数据结构的相关东西,并且所涉及的相关Demo依然使用面向对象语言Swift来表示.本篇博客 ...

  4. 遍历二叉树 traversing binary tree 线索二叉树 threaded binary tree 线索链表 线索化

    遍历二叉树   traversing binary tree 线索二叉树 threaded binary tree 线索链表 线索化 1. 二叉树3个基本单元组成:根节点.左子树.右子树 以L.D.R ...

  5. 树和二叉树->线索二叉树

    文字描述 从二叉树的遍历可知,遍历二叉树的输出结果可看成一个线性队列,使得每个结点(除第一个和最后一个外)在这个线形队列中有且仅有一个前驱和一个后继.但是当采用二叉链表作为二叉树的存储结构时,只能得到 ...

  6. C++11 智能指针unique_ptr使用 -- 以排序二叉树为例

    用智能指针可以简化内存管理.以树为例,如果用普通指针,通常是在插入新节点时用new,在析构函数中调用delete:但有了unique_ptr类型的智能指针,就不需要在析构函数中delete了,因为当u ...

  7. 数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

    树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构.    a.树是n ...

  8. c++(排序二叉树删除)

    相比较节点的添加,平衡二叉树的删除要复杂一些.因为在删除的过程中,你要考虑到不同的情况,针对每一种不同的情况,你要有针对性的反应和调整.所以在代码编写的过程中,我们可以一边写代码,一边写测试用例.编写 ...

  9. c++(排序二叉树)

    前面我们讲过双向链表的数据结构.每一个循环节点有两个指针,一个指向前面一个节点,一个指向后继节点,这样所有的节点像一颗颗珍珠一样被一根线穿在了一起.然而今天我们讨论的数据结构却有一点不同,它有三个节点 ...

随机推荐

  1. python的属性(property)使用

    在面向对象编程的时候,我们定义一个Person类 class Person: def __init__(self): self.age = 22 这样写法能够方便的访问属性age, p = Perso ...

  2. 地理信息系统公开课计划 前言I

    对,就是地理信息系统(GIS),不是遥感RS,也不是编程,纯粹的地理信息系统. 地理信息系统=数学+物理+计算机+地理的烧脑组合. 但凡能知道.了解地理信息系统的人,基本上都不会是非知识分子,我就不矫 ...

  3. js scrollTop 事件

    代码: window.onscroll = function() { var t = document.documentElement.scrollTop || document.body.scrol ...

  4. jsDOM编程-乌龟抓小鸡游戏

    <html> <head>  <title>js乌龟抓小鸡游戏 </title>    <meta http-equiv="conten ...

  5. mysql case when group by实例

    mysql 中类似php switch case 的语句. select xx字段, case 字段 when 条件1 then 值1 when 条件2 then 值2 else 其他值 END 别名 ...

  6. BLE抓包是怎么回事儿?

    BLE抓包 在进行网络开发的时候,抓包是一个很重要的调试过程,通过抓包可以分析网络传输的数据是否正确,可以深入理解网络传输过程.在物联网开发中,BLE低功耗蓝牙技术是一种非常通用的网络传输方式.在学习 ...

  7. 比较日期大小以及获取select选中的option的value

    原生JavaScript如何获取select选中的value // 1. 拿到select对象 const selectObject = document.getElementById('test') ...

  8. Django学习日记07_Admin

    django.contrib django.contrib是django中附带的一个工具集,由很多的附加组件组成.这些附加组件包括管理工具(django.contrib.admin).用户鉴别系统(d ...

  9. Android手机通过APN设置上网的方法

    今天一个朋友问了我关于android网络设置的问题,感觉还是挺有趣,特分享如下: 他是在香港买了一款LGP500的手机,系统是android系统,但是回来之后不能上网,于是在网上搜了很多资料,但是设置 ...

  10. Vue 爬坑之路(七)—— 监听滚动事件 实现动态锚点

    前几天做项目的时候,需要实现一个动态锚点的效果 如果是传统项目,这个效果就非常简单.但是放到 Vue 中,就有两大难题: 1. 在没有 jQuery 的 animate() 方法的情况下,如何实现平滑 ...