题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068

最长回文

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 15922    Accepted Submission(s): 5830

Problem Description
给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.
回文就是正反读都是一样的字符串,如aba, abba等
 
Input
输入有多组case,不超过120组,每组输入为一行小写英文字符a,b,c...y,z组成的字符串S
两组case之间由空行隔开(该空行不用处理)
字符串长度len <= 110000
 
Output
每一行一个整数x,对应一组case,表示该组case的字符串中所包含的最长回文长度.
 
Sample Input
aaaa

abab

 
Sample Output
4
3
 
Source
题解:
第一次学习Manacher算法。我把我理解的写下来。这个算法求回文串的复杂度是O(n)的,只需要扫描一遍数组就可以得到解
首先分享一个写的非常好的博文:http://blog.csdn.net/muxidreamtohit/article/details/8865210
由于它介绍的太好了,我怕丢了,所以我决定复制在下面,这个算法很好理解,主要思想就是保存一个扩展最右端的点,这样这个最右端的左侧的点就不用再次匹配了,然后匹配右侧的并更新右端的

首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长。这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文有多长,
    这个算法有一个很巧妙的地方,它把奇数的回文串和偶数的回文串统一起来考虑了。这一点一直是在做回文串问题中时比较烦的地方。这个算法还有一个很好的地方就是充分利用了字符匹配的特殊性,避免了大量不必要的重复匹配。
    算法大致过程是这样。先在每两个相邻字符中间插入一个分隔符,当然这个分隔符要在原串中没有出现过。一般可以用‘#’分隔。这样就非常巧妙的将奇数长度回文串与偶数长度回文串统一起来考虑了(见下面的一个例子,回文串长度全为奇数了),然后用一个辅助数组P记录以每个字符为中心的最长回文串的信息。P[id]记录的是以字符str[id]为中心的最长回文串,当以str[id]为第一个字符,这个最长回文串向右延伸了P[id]个字符。
    原串:    w aa bwsw f d
    新串:   # w# a # a # b# w # s # w # f # d #
辅助数组P:  1 2 1 2 3 2 1 2 1 2 1 4 1 2 1 2 1 2 1
    这里有一个很好的性质,P[id]-1就是该回文子串在原串中的长度(包括‘#’)。如果这里不是特别清楚,可以自己拿出纸来画一画,自己体会体会。当然这里可能每个人写法不尽相同,不过我想大致思路应该是一样的吧。
    好,我们继续。现在的关键问题就在于怎么在O(n)时间复杂度内求出P数组了。只要把这个P数组求出来,最长回文子串就可以直接扫一遍得出来了。
    由于这个算法是线性从前往后扫的。那么当我们准备求P[i]的时候,i以前的P[j]我们是已经得到了的。我们用mx记在i之前的回文串中,延伸至最右端的位置。同时用id这个变量记下取得这个最优mx时的id值。(注:为了防止字符比较的时候越界,我在这个加了‘#’的字符串之前还加了另一个特殊字符‘$’,故我的新串下标是从1开始的)
好,到这里,我们可以先贴一份代码了。

  1. void pk()
    {
        int i;
        int mx = 0;
        int id;
        for(i=1; i<n; i++)
        {
            if( mx > i )
                p[i] = MIN( p[2*id-i], mx-i );        
            else
                p[i] = 1;
            for(; str[i+p[i]] == str[i-p[i]]; p[i]++)
                ;
            if( p[i] + i > mx )
            {
                mx = p[i] + i;
                id = i;
            }
        }
    }
   代码是不是很短啊,而且相当好写。很方便吧,还记得我上面说的这个算法避免了很多不必要的重复匹配吧。这是什么意思呢,其实这就是一句代码。
 
if( mx > i)
    p[i]=MIN( p[2*id-i], mx-i);
 
就是当前面比较的最远长度mx>i的时候,P[i]有一个最小值。这个算法的核心思想就在这里,为什么P数组满足这样一个性质呢?
   (下面的部分为图片形式)

其实核心的一句话就在于回文翻转了还是回文这一句.

图上也是在诠释这一句,所以,利用前面已经匹配过的最大的回文串,就是尽可能利用访问过的资源

图1中,以如果i大于mx的话,那么就完全没有前面的信息可以用,只好乖乖的一个一个左右匹配,

但是如果i<mx的话,那么就说明前面可以有相应的资源可以利用.因为以id的左右的回文肯定包括i关于id对称的j点处的一部分或者全部回文.

所以如果是包括全部的话就是图1的情况

如果只是包含部分的情况那么就是图2.

那么由图2很清晰可以看到那个回文更短些,即mx-i

下面是这个题的代码:

 //manacher
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
char m[N];
char b[*N];
int sum[*N];
int cnt;
void bian(int len)
{
int i;
cnt = ;
b[] = '$';
for(int i = ; i< len; i++){
b[cnt++] = '#';
b[cnt++] = m[i];
}
b[cnt] = '#';
return;
}
int solve()
{
int Max = -;
int mx = ;
int k;
for(int i = ; i < cnt; i++)
{
if(i<mx)
sum[i] = min(sum[*k-i],mx-i);
else
sum[i] = ;
for(;b[i+sum[i]]==b[i-sum[i]];sum[i]++);//这里是为了处理sum[i] = mx-i的情况
if(i+sum[i]>mx)//每次都要更新最远端和最远端对应的中点的信息。
{
k = i;
mx = i + sum[i];
}
Max = max(Max,sum[i]);
}
return Max-;
}
int main()
{
while(~scanf("%s",m))
{
int len = strlen(m);
bian(len);
int ans = solve();
printf("%d\n",ans);
getchar();
}
return ;
}

hdu_3068 最长回文(Manacher算法)的更多相关文章

  1. hdu 3068 最长回文 manacher算法(视频)

    感悟: 首先我要Orz一下qsc,我在网上很难找到关于acm的教学视频,但偶然发现了这个,感觉做的很好,链接:戳戳戳 感觉这种花费自己时间去教别人的人真的很伟大. manacher算法把所有的回文都变 ...

  2. HDU3068 最长回文 Manacher算法

    Manacher算法是O(n)求最长回文子串的算法,其原理很多别的博客都有介绍,代码用的是clj模板里的,写的确实是异常的简洁,现在的我只能理解个大概,下面这个网址的介绍比较接近于这个模板,以后再好好 ...

  3. hdu-3068-最长回文(manacher算法模板)

    题目链接 /* Name:hdu-3068-最长回文 Copyright: Author: Date: 2018/4/24 16:12:45 Description: manacher算法模板 */ ...

  4. [hdu3068 最长回文]Manacher算法,O(N)求最长回文子串

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 题意:求一个字符串的最长回文子串 思路: 枚举子串的两个端点,根据回文串的定义来判断其是否是回文 ...

  5. HDU 3068 最长回文 manacher 算法,基本上是O(n)复杂度

    下面有别人的比较详细的解题报告: http://wenku.baidu.com/view/3031d2d3360cba1aa811da42.html 下面贴我的代码,注释在代码中: #include ...

  6. hdu3068最长回文(Manacher算法)

    简单来说这是个很水的东西.有点dp的思想吧.推荐两个博客,很详细. http://blog.csdn.net/xingyeyongheng/article/details/9310555 http:/ ...

  7. HDU 3068 最长回文 Manacher算法

    Manacher算法是个解决Palindrome问题的O(n)算法,能够说是个超级算法了,秒杀其它一切Palindrome解决方式,包含复杂的后缀数组. 网上非常多解释,最好的解析文章当然是Leetc ...

  8. Manacher's algorithm: 最长回文子串算法

    Manacher 算法是时间.空间复杂度都为 O(n) 的解决 Longest palindromic substring(最长回文子串)的算法.回文串是中心对称的串,比如 'abcba'.'abcc ...

  9. Manacher 求最长回文子串算法

    Manacher算法,是由一个叫Manacher的人在1975年发明的,可以在$O(n)$的时间复杂度里求出一个字符串中的最长回文子串. 例如这两个回文串“level”.“noon”,Manacher ...

随机推荐

  1. Node: 如何控制子进程的输出

    大家知道,在一个node程序中,如果当前进程想要生成一个子进程,它可以调用child_process模块的spawn方法.spawn方法签名如下: child_process.spawn(comman ...

  2. 西门子flexable创建画面

    一.wincc flexable 创建画面包括以下四点 二.具体操作 1.组态画面模板 1)使用该模板的画面包括该模板的所有组件,一个模板也是一个画面 2)给模板上添加一个文本域如下图,则画面1也会显 ...

  3. asp.net MVC分页

    .Net MVC  分页代码,分页的关键就是在于这几个参数pageIndex ,recordCount,pageSize ,下面是张林的网站做的一个简单的分页代码 效果如图 public class ...

  4. Spark源码剖析(六):Worker原理与源码剖析

    上篇文章我们剖析了Master的原理和源码,知道了当Master使用资源分配算法将资源分配完成后,就会给对应的Worker发送启动Driver或者Executor的消息,那么Worker收到这些消息后 ...

  5. 阿里云 redis 通过rinetd 进行端口透传

    https://help.aliyun.com/document_detail/43850.html?spm=5176.7738718.2.3.yW2eyQ 目前云数据库 Redis 版需要通过 EC ...

  6. 阿里云的oss使用技巧

    1初始化: 使用阿里云sdk包(php) 方法一:使用composer 加载sdk包 composer require aliyuncs/oss-sdk-php 或 "require&quo ...

  7. Web框架django[Form]组件

    新手上路 Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次提交数据 初始化页面显示内容 小试牛刀 1.创建Form类 # 创 ...

  8. UWP 手绘视频创作工具技术分享系列 - 手绘视频与视频的结合

    本篇作为技术分享系列的第三篇,详细讲一下手绘视频中结合视频的处理方式. 随着近几年短视频和直播行业的兴起,视频成为了人们表达情绪和交流的一种重要方式,人们对于视频的创作.编辑和分享有了更多的需求.而视 ...

  9. 浅淡python中的with,上下文管理器

    例子一 首先来看一段代码: class Foo(object): def __init__(self): print('实例化一个对象') def __enter__(self): print('进入 ...

  10. oracle未归纳

    配置文件路径 路径:F:\app\Administrator\product\11.2.0\dbhome_1\NETWORK\ADMIN.配置文件解释如下: listener.ora:打开后内容如下 ...