MATLAB卷积运算(conv、conv2、convn)解释
1
conv(向量卷积运算)
所谓两个向量卷积,说白了就是多项式乘法。
比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:
把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x。
卷积就是“两个多项式相乘取系数”。
(1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3
所以p和q卷积的结果就是[1 3 5 3]。
记住,当确定是用升幂或是降幂排列后,下面也都要按这个方式排列,否则结果是不对的。
你也可以用matlab试试
p=[1 2 3]
q=[1 1]
conv(p,q)
看看和计算的结果是否相同。
conv2(二维矩阵卷积运算)
a=[1 1 1;1 1 1;1 1 1];
b=[1 1 1;1 1 1;1 1 1];
>> conv2(a,b)
ans =
1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1
>> conv2(a,b,'valid')
ans =
9
>> conv2(a,b,'same')
ans =
4 6 4
6 9 6
4 6 4
>> conv2(a,b,'full')
ans =
1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1
convn(n维矩阵卷积运算)
>> a=ones(5,5,5)
a(:,:,1) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
a(:,:,2) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
a(:,:,3) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
a(:,:,4) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
a(:,:,5) =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
>> b=ones(5,5,5);
>> convn(a,b,'valid')
ans =
125
>> convn(a,b,'same')
ans(:,:,1) =
27 36 45 36 27
36 48 60 48 36
45 60 75 60 45
36 48 60 48 36
27 36 45 36 27
ans(:,:,2) =
36 48 60 48 36
48 64 80 64 48
60 80 100 80 60
48 64 80 64 48
36 48 60 48 36
ans(:,:,3) =
45 60 75 60 45
60 80 100 80 60
75 100 125 100 75
60 80 100 80 60
45 60 75 60 45
2
1.full
如下图:
图(1)
图中蓝色为原图像,白色为对应卷积所增加的padding,通常全部为0,绿色是卷积后图片。图的卷积的滑动是从卷积核右下角与图片左上角重叠开始进行卷积,滑动步长为1,卷积核的中心元素对应卷积后图像的像素点。
2.same
如下图:
图(2)
卷积的时候需要对卷积核进行180的旋转,同时卷积核中心与需计算的图像像素对齐,输出结构为中心对齐像素的一个新的像素值
3. valid
如下图:
图(3)
太简单,不解释。
其中,矩阵A和B的尺寸分别为ma*na即mb*nb
① 对矩阵A补零,第一行之前和最后一行之后都补mb-1行,第一列之前和最后一列之后都补nb-1列(注意conv2不支持其他的边界补充选项,函数内部对输入总是补零);

② 将卷积核绕其中心旋转180度;

③ 滑动旋转后的卷积核,将卷积核的中心位于图像矩阵的每一个元素,并求乘积和(即将旋转后的卷积核在A上进行滑动,然后对应位置相乘,最后相加);下面分别是shape=full, same, valid时取输出图像大小的情况,其中:位置1表示输出图像的值从当前核的计算值开始(对应输出图像左上角),位置2表示到该位置结束(对应输出图像右下角)

MATLAB卷积运算(conv、conv2、convn)解释的更多相关文章
- MATLAB卷积运算(conv、conv2)解释
来源:https://www.cnblogs.com/hyb221512/p/9276621.html 1.conv(向量卷积运算) 所谓两个向量卷积,说白了就是多项式乘法.比如:p=[1 2 3], ...
- MATLAB多项式运算
序言 none 正文 1. 多项式的表示 在Matlab中,多项式用一个行向量表示, 行向量的元素值为多项式系数按幂次的降序排列, 如p(x)=x3-2x-5用P=[1,0,-2,-5]表示. 2. ...
- matlab中imfilter、conv2、imfilter2用法及区别
来源 :https://blog.csdn.net/u013066730/article/details/56665308(比较详细) https://blog.csdn.net/yuanhuilin ...
- 卷积运算的本质,以tensorflow中VALID卷积方式为例。
卷积运算在数学上是做矩阵点积,这样可以调整每个像素上的BGR值或HSV值来形成不同的特征.从代码上看,每次卷积核扫描完一个通道是做了一次四重循环.下面以VALID卷积方式为例进行解释. 下面是pyth ...
- 基于INTEL FPGA硬浮点DSP实现卷积运算
概述 卷积是一种线性运算,其本质是滑动平均思想,广泛应用于图像滤波.而随着人工智能及深度学习的发展,卷积也在神经网络中发挥重要的作用,如卷积神经网络.本参考设计主要介绍如何基于INTEL 硬浮点的DS ...
- iOS中的图像处理(二)——卷积运算
关于图像处理中的卷积运算,这里有两份简明扼要的介绍:文一,文二. 其中,可能的一种卷积运算代码如下: - (UIImage*)applyConvolution:(NSArray*)kernel { C ...
- im2col:将卷积运算转为矩阵相乘
目录 im2col实现 优缺点分析 参考 博客:blog.shinelee.me | 博客园 | CSDN im2col实现 如何将卷积运算转为矩阵相乘?直接看下面这张图,以下图片来自论文High P ...
- python conv2d scipy卷积运算
scipy的signal模块经常用于信号处理,卷积.傅里叶变换.各种滤波.差值算法等. *两个一维信号卷积 >>> import numpy as np >>> x ...
- Filter2D卷积运算
图像处理中的卷积运算一般都用来平滑图像.尖锐图像求边缘等等.主要看你选择什么样的核函数了.现在核函数很多,比如高斯平滑核函数,sobel核函数,canny核函数等等.这里举一个sobel核函数的例子来 ...
随机推荐
- 网页三剑客:HTML+CSS+JavaScript 之CSS概述
CSS 简介 什么是 CSS? CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素 样式通常存储在样式表中 把样式添加到 HTML 4.0 中,是 ...
- Python sys 模块
import sys # 把命令行参数返回一个 List,第一个元素是程序本身的路径 print(sys.argv) # 命令行运行 python3 sys_model.py klvchen hell ...
- Hadoop shell命令
1.FS Shell 调用文件系统(FS)shell命令应使用bin/hadoop fs <args>的形式.所有的的FS shell命令使用URI路径作为参数.URI格式是scheme: ...
- Keras 中 TimeDistributed 和 TimeDistributedDense 理解
From the offical code: class TimeDistributed(Wrapper): """This wrapper applies a laye ...
- 安卓开发_浅谈AsyncTask
现在就来学习一下AsyncTask. 一.先介绍一下AsyncTask: 在开发Android移动客户端的时候往往要使用多线程来进行操作,我们通常会将耗时的操作放在单独的线程执行,避免其占用主线程而给 ...
- Handler消息处理机制详解
之前一直只知道handler如何使用,不知道其中的工作原理,趁着新版本提测阶段比较空闲,及时做一个总结. 先看一下Google官方文档关于handler的解释: A Handler allows yo ...
- python第六天 函数 python标准库实例大全
今天学习第一模块的最后一课课程--函数: python的第一个函数: 1 def func1(): 2 print('第一个函数') 3 return 0 4 func1() 1 同时返回多种类型时, ...
- mysqld_safe启动服务器总结
mysqld_safe是服务端工具,用于启动mysqld,并且是mysqld的守护进程,mysqld_safe加&在后台运行$BASEDIR/bin/mysqld_safe & 优点就 ...
- ZooKeeper学习总结 第二篇:ZooKeeper深入探讨
其实zookeeper系列的学习总结很早就写完了,这段时间在准备找工作的事情,就一直没有更新了.下边给大家送上,文中如有不恰当的地方,欢迎给予指证,不胜感谢!. 1. 数据模型 1.1. 只适合存储小 ...
- jsp 一点点
jsp学习 jsp -处理 作为正常的页面,你的浏览器发送一个http请求道web服务器. web 服务器承认一个JSP页面的HTTP请求,并将其转发给一个JSP引擎. JSP引擎从磁盘加载JSP页面 ...