Linux kernel Programming - Allocating Memory
kmalloc
#include <linux/slab.h>
void *kmalloc(size_t size,int flags);
void kfree(void *addr);
flags:
GFP_ATOMIC:
Used to allocate memory from interrupt handlers and other code outside of a process context.Never sleeps
GFP_KERNEL:
Normal allocation of kernel memory,May sleep.
GFP_USER
Used to allocate memory for user-space pages; it may sleep.
GFP_HIGHUSER
Like GFP_USER, but allocates from high memory, if any. High memory is described in the next subsection.
GFP_NOIO
GFP_NOFS
These flags function like GFP_KERNEL, but they add restrictions on what the ker-nel can do to satisfy the request. A GFP_NOFS allocation is not allowed to perform
The allocation flags listed above can be augmented by an ORing in any of the follow-ing flags, which change how the allocation is carried out:
__GFP_DMA
This flag requests allocation to happen in the DMA-capable memory zone. The exact meaning is platform-dependent and is explained in the following section.
__GFP_HIGHMEM
This flag indicates that the allocated memory may be located in high memory.
__GFP_COLD
Normally, the memory allocator tries to return “cache warm” pages—pages that are likely to be found in the processor cache. Instead, this flag requests a “cold” page, which has not been used in some time. It is useful for allocating pages for DMA reads, where presence in the processor cache is not useful. See the section“Direct Memory Access” in Chapter 1 for a full discussion of how to allocate DMA buffers.
__GFP_NOWARN
This rarely used flag prevents the kernel from issuing warnings (with printk)when an allocation cannot be satisfied
__GFP_HIGH
This flag marks a high-priority request, which is allowed to consume even thelast pages of memory set aside by the kernel for emergencies.
__GFP_REPEAT
__GFP_NOFAIL
__GFP_NORETRY
These flags modify how the allocator behaves when it has difficulty satisfying anallocation.__GFP_REPEAT means “try a little harder” by repeating the attempt—but the allocation can still fail. The__GFP_NOFAIL flag tells the allocator never to fail; it works as hard as needed to satisfy the request. Use of__GFP_NOFAILis very strongly discouraged; there will probably never be a valid reason to use it in adevice driver. Finally,__GFP_NORETRY tells the allocator to give up immediately ifthe requested memory is not available.
Memory zones
The Linux kernel knows about a minimum of three memory zones: DMA-capable memory,normal memory,and high memory.
ZONE_DMA:是低内存的一块区域,用于DMA
ZONE_NORMAL:属于该区域的内存,被内核直接映射到线性地址
ZONE_HIGHMEM:是系统中剩下的可用内存,但是因为内核地址空间有限,这部分内存不能直接映射到内核。
links:http://www.ilinuxkernel.com/files/Linux_Physical_Memory_Description.pdf
The Size Argument
the smallest allocation that kmalloc can handle is as big as 32 or 64 bytes,depending on the page size used by the system's architecture.
If your code is to be completely portable,it cannot count on being able to allocate anything larger than 128KB.
Lookaside Caches
#include <linux/slab.h>
kmem_cache *kmem_cache_create(const char *name,size_t size,size_t offset,unsigned long flags,void (*ctor)(void*));
void *kmem_cache_alloc(kmem_cache *cache,int flags);
void kmem_cache_free(kmem_cache *cache,const void *obj);
void kmem_cache_destroy(kmem_cache *cache);
Memory pools
There are place in the kernel where memory allocations cannot be allowd to fail.
#include <linux/mempool.h>
typedef void *(mempool_alloc_t)(int gfp_mask,void *pool_data);
typedef void *(mempool_free_t)(void *element,void *pool_data);
mempool_t *mempool_create(int min_nr,mempool_alloc_t *alloc_fn,mempool_free_t *free_fn,void *pool_data);
void *mempool_alloc(mempool_t *pool,int gfp_mask);
void mempool_free(void *element,mempool_t *pool);
int mempool_resize(mempool_t *pool,int new_min_nr,int gfp_mask);
void mempool_destroy(mempool_t* pool);
eg:
cache = kmem_cache_create(...);
pool = mempool_create(20,mempool_alloc_slab,mempool_free_slab,cache);
get_free_page and Friends
If a module needs to allocate big chunks of memory,it is usually better to use a page-oriented technique.
#include <linux/gfp.h>
get_zeroed_page(unsigned int flags);
__get_free_page(unsigned int flags);
__get_free_pages(unsined int flags,unsigned int order);
void free_page(unsigned long addr);
void free_pages(unsigned long,unsigned long order);
order is the base-two logarithm of the number of pages you are requesting or freeing.For example,order is 0 if you want one page and 3 if you want request eight pages.
The alloc_pages Interface
The real core of the Linux page allocator is a function called alloc_pages_node:
struct page *alloc_pages_node(int nid,unsigned int flags,unsigned int order);
This function also has two variants;
struct page *alloc_pages(unsigned int flags,unsigned int order);
struct page *alloc_page(unsigned int flags);
void __free_page(struct page *page);
void __free_pages(struct page *page,unsigned int order);
void free_hot_page(struct page *page);
void free_cold_page(struct page *page);
vmalloc and Friends
The(virtual) address range used by kmalloc and __get_free_pages features a one-to-one mapping to physical memory,possibly shifted by a constant PAGE_OFFSET value.
allocates a contiguous memory region in the virtual address space.Although the pages are not consecutive in physical memory(each page is retrieved with a separate call to alloc_page),the kernel sees them as a contiguous range of addresses.
#include <linux/vmalloc.h>
void *vmalloc(unsigned long size);
void vfree(void *addr);
void *ioremap(unsigned long offset,unsigned long size);
void iounmap(void *addr);
Per-CPU Variables
#include <linux/percpu.h>
DEFINE_PER_CPU(type,name);
per_cpu(variable,int cpu_id);
get_cpu_var(sockets_in_use)++;
put_cpu_var(sockets_in_use);
The call to get_cpu_var returns an lvalue for the current processor's version of the variable and disables preemption.
Dynamically allocated per-CPU variable are also possible.
void *alloc_percpu(type);
void *__alloc_percpu(size_t size,size_t align);
per_cpu_ptr(void *per_cpu_var,int cpu_id);
void free_percpu(void *);
you need to use get_cpu to block preemption while working with the variabel.
eg:
int cpu;
cpu = get_cpu();
ptr = per_cpu_ptr(per_cpu_var,cpu);
/*work with ptr*/
put_cpu();
Export Per-CPU variables:
EXPORT_PER_CPU_SYMBOL(per_cpu_var);
EXPORT_PER_CPU_SYMBOL_GPL(per_cpu_var);
To access such a variable within a module,declare it with:
DECLARE_PER_CPU(type, name);
The use of DECLARE_PER_CPU(instead ofDEFINE_PER_CPU) tells the compiler that an external reference is being made
Acquiring a Dedicated Buffer at Boot Time
Needless to say,a module can't allocate memory at boot time;only drivers directly linked to the kernel can do that;
When the kernel is booted,it gains access to all the physical memory available in the system.It then initializes each of its subsystems by calling that subsystem's initialization function,allowing initialization code to allocate a memory buffer for private use by reducing the amount of RAM left for normal system operation.
#include <linux/bootmem.h>
void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);
void free_bootmem(unsigned long addr,unsigned long size);
Linux kernel Programming - Allocating Memory的更多相关文章
- Linux kernel Programming - Concurrency and Race Conditions
Concurrency and Its Management Race condition can often lead to system crashes, memory leak,corrupte ...
- Linux Kernel Programming - Time,Delays,and Deferred Work
Measuring Time Lapses The counter and the utility functions to read it live in <linux/jiffies.h&g ...
- Linux kernel Programming - Advanced Char Driver Operations
ioctl //user space int ioctl(int fd,unsigned long cmd,...); //kernel space int (*ioctl)(struct inode ...
- [中英对照]Linux kernel coding style | Linux内核编码风格
Linux kernel coding style | Linux内核编码风格 This is a short document describing the preferred coding sty ...
- Linux kernel memory-faq.txt
## Linux kernel memory-faq.txt What is some existing documentation on Linux memory management? Ulric ...
- Linux Kernel中断子系统来龙去脉浅析【转】
转自:http://blog.csdn.net/u011461299/article/details/9772215 版权声明:本文为博主原创文章,未经博主允许不得转载. 一般来说,在一个device ...
- ANALYSIS AND EXPLOITATION OF A LINUX KERNEL VULNERABILITY (CVE-2016-0728)
ANALYSIS AND EXPLOITATION OF A LINUX KERNEL VULNERABILITY (CVE-2016-0728) By Perception Point Resear ...
- Python classes to extract information from the Linux kernel /proc files.
python/python-linux-procfs/python-linux-procfs.git - Python classes to extract information from the ...
- Linux Kernel中所應用的數據結構及演算法
Linux Kernel中所應用的數據結構及演算法 Basic Data Structures and Algorithms in the Linux kernel Links are to the ...
随机推荐
- Java - ConcurrentMap原理
https://blog.csdn.net/justloveyou_/article/details/72783008 结构是怎样的?segment是什么?hashEntry是什么?默认可并发的大小是 ...
- Python全栈学习_day005作业
,有如下变量(tu是个元祖),请实现要求的功能 tu = (, , {,,)}, ]) a. 讲述元祖的特性 b. 请问tu变量中的第一个元素 "alex" 是否可被修改? c. ...
- Python 练习:九九乘法表
num = 1 while num <= 9: tmp = 1 while tmp <= num: print(tmp, "*", num, "=" ...
- Oracle 启动实例(instance)、打开数据库
Oracle启动实例(instance).打开数据库 by:授客 QQ:1033553122 启动实例(instance).打开数据库 1.开启sqlplus [laiyu@localhost ~ ...
- Ubuntu16下配置支持Windows访问的samba共享
一.安装Ubuntu samba服务器 $ sudo apt-get install samba $ sudo apt-get install smbclient # Linux客户端测试用 二.创建 ...
- Microsoft .NET Core 1.0.0 VS 2015 Tooling Preview 2 Uninstall Failed
卸载过程中总是卸载失败报0x80070001:函数不明确错误.转遍了各大论坛和QQ,最终还是在stackoverflow上找到了答案... 原因是我卸载时选择的DotNetCore.1.0.0-VS2 ...
- mybatis学习--缓存(一级和二级缓存)
声明:学习摘要! MyBatis缓存 我们知道,频繁的数据库操作是非常耗费性能的(主要是因为对于DB而言,数据是持久化在磁盘中的,因此查询操作需要通过IO,IO操作速度相比内存操作速度慢了好几个量级) ...
- Django电商项目---完成购物车页面day4
创建购物车项目App python manage.py startapp df_cart 初始化项目: manas/urls.py manas/settings.py 创建新文件:df_cart/ur ...
- 如何以SYSTEM用户运行CMD
有的时候有些文件在管理员账户不能删除,这个时候需要在SYSTEM用户下删除. 可以通过以SYSTEM权限运行CMD来删除某些文件或目录的目的. 1. 从微软网站下载PSTool. 2. 以管理员运行C ...
- 解决关于phpstorm打开速度很慢的问题
我的电脑是GTX950M , 8G 内存的 ,配置不算低但是打开phpstorm的速度非常的慢.基本上每次打开都要花一分钟以上,虽然打开sublime text3 只需要三四秒,但是phpstorm功 ...