(Catalan数 大数) Game of Connections poj2084
Language:
Game of Connections
|
Time Limit: 1000MS |
Memory Limit: 30000K |
|
Total Submissions: 8837 |
Accepted: 4358 |
Description
This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, . . . , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another.
And, no two segments are allowed to intersect.
It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?
Input
Each line of the input file will be a single positive number n, except the last line, which is a number -1.
You may assume that 1 <= n <= 100.
Output
For each n, print in a single line the number of ways to connect the 2n numbers into pairs.
Sample Input
2
3
-1
Sample Output
2
5
用java,卡特兰数
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args) { //java的基础部分要好好扎实。
Scanner in=new Scanner(System.in);
BigInteger a[]=new BigInteger[101];
a[0]=BigInteger.valueOf(0);
a[1]=BigInteger.valueOf(1);
int n;
while(in.hasNextInt()) {
n=in.nextInt();
if(n==-1)
break;
for(int i=2;i<=n;i++) {
a[i]=a[i-1].multiply(BigInteger.valueOf(i*4-2)).divide(BigInteger.valueOf(i+1));
}
System.out.println(a[n]);
}
}
}
(Catalan数 大数) Game of Connections poj2084的更多相关文章
- (母函数 Catalan数 大数乘法 大数除法) Train Problem II hdu1023
Train Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 【集训笔记】【大数模板】特殊的数 【Catalan数】【HDOJ1133【HDOJ1134【HDOJ1130
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/artic ...
- 求解Catalan数,(大数相乘,大数相除,大数相加)
Catalan数 卡塔兰数是组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名.历史上,清代数学家明安图(1692年-1763年)在其<割圜 ...
- HDU 1023 Train Problem II 大数打表Catalan数
一个出栈有多少种顺序的问题.一般都知道是Catalan数了. 问题是这个Catalan数非常大,故此须要使用高精度计算. 并且打表会速度快非常多.打表公式要熟记: Catalan数公式 Cn=C(2n ...
- HDU1023 Train Problem II【Catalan数】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1023 题目大意: 一列N节的火车以严格的顺序到一个站里.问出来的时候有多少种顺序. 解题思路: 典型 ...
- Catalan数应用整理
应用一: codevs 3112 二叉树计数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 一个有n个结点的二叉树总共有 ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- Catalan数(数论)
Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要 ...
- Catalan数 && 【NOIP2003】出栈序列统计
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...
随机推荐
- ACM注意事项
acm竞赛中不能使用一些屏幕控制和键盘读取的函数,如:getch(),geche(),gotoxy(),clrscr(),另外fflush(stdio)这个函数也不能使用,因为在有的编译 ...
- 个人博客-week7
团队任务收获及个人感想 团队任务已经进行了一个多月的时间,我很荣幸能和软剑攻城队的小伙伴们度过这一个月的开发时光.在这一个月的时间里,我亲身经历了一个软件从想法到实现,从创意到实体的过程.同时我也在和 ...
- 《Linux内核设计》第17章学习笔记
- Linux课题实践一
Linux课题实践一 20135318 刘浩晨 1.1应用安装 (1)掌握软件源的维护方法,配置系统使用软件源镜像 删除过期或者重复的软件包:进入”系统设置“-”软件和更新”-”ubuntu软件“- ...
- 实验十一 团队作业7—团队项目设计完善&编码测试
实验十一 团队作业7—团队项目设计完善&编码测试 实验时间 2018-6-8 Deadline: 2018-6-20 10:00,以团队随笔博文提交至班级博客的时间为准. 评分标准: 按时交 ...
- Hacked VisualSVN Server by PHP to allow user change password
index.php <?php$username = $_SERVER["PHP_AUTH_USER"]; //经过 AuthType Basic 认证的用户名$authed ...
- spring cloud实战与思考(一) spring config全局配置方案设计
“spring cloud”的配置中心工具“spring cloud config”提供了分布式系统配置文件集中管理解决方案.该工具功能强大,实现也很简单.网上可以搜索到很多开发教程和用例.本文并不是 ...
- MySQL中char、varchar和nvarchar的区别
一.char和varchar的区别char是固定长度的,而varchar会根据具体的长度来使用存储空间,另外varchar需要用额外的1-2个字节存储字符串长度.1). 当字符串长度小于255时,用额 ...
- BZOJ3732Network——kruskal重构树+倍增+LCA/最小生成树+倍增
题目描述 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条边 (1 <= M <= 30,000) ,第j条边的长度为: d_j ( 1 & ...
- Mvc 前台 匿名对象
View无法使用 dynamic 报错: object 未包含....的属性 这里需要区别一下:如果dynamic只是简单模型,那么还是可以使用的.例如 dynamic v = new Expando ...