hdu 2870 Largest Submatrix(平面直方图的最大面积 变形)
题意:求一最大子矩阵(该矩阵的元素相同)的个数
思路:我们可以把这道题抽象成直方图
用l[]和r[]两个数组分别记录该点比他大的最左下标和最右下标
当在搜索下标为i的单位矩阵时,当i-1的下标的单位矩阵高度高于它时,其实我们是已经判断过下标为i-1的单位矩阵的最左端
下标的,所以这就满足dp的条件,只要把左边各个连续且大于h[i]高度的矩阵的最远下边记录下来即可。
#include <cstdio>
#include <map>
#include <iostream>
#include<cstring>
#include<bits/stdc++.h>
#define ll long long int
#define M 6
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
char G[][];
int l[],r[];
int h[];
int m,n;
int main(){
ios::sync_with_stdio(false);
char t[]={'a','b','c'};
char equal[][]={'b','c','x','a','c','y','a','b','w'};
while(cin>>m>>n){
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
cin>>G[i][j];
int ans=-inf;
for(int ii=m;ii>=;ii--){ //遍历每一行
for(int i=;i<;i++){ //每一行都有'a','b','c'三种情况
char temp=t[i];
memset(h,,sizeof(h));
memset(l,,sizeof(l));
memset(r,,sizeof(r));
for(int k=;k<=n;k++)
for(int j=ii;j>=;j--){
if(G[j][k]==equal[i][]||G[j][k]==equal[i][]||G[j][k]==equal[i][])
break;
h[k]++; //记录该层的高度
}
l[]=; r[n]=n;
for(int k=;k<=n;k++){
int t=k;
while(t>&&h[k]<=h[t-]){
t=l[t-];
}
l[k]=t;
}
for(int k=n-;k>=;k--){
int t=k;
while(t<n&&h[k]<=h[t+]){
t=r[t+];
}
r[k]=t;
}
for(int k=;k<=n;k++)
ans=max(ans,h[k]*(r[k]-l[k]+));
}
}
cout<<ans<<endl;
}
}
hdu 2870 Largest Submatrix(平面直方图的最大面积 变形)的更多相关文章
- HDU 2870 Largest Submatrix (单调栈)
http://acm.hdu.edu.cn/showproblem.php? pid=2870 Largest Submatrix Time Limit: 2000/1000 MS (Java/Oth ...
- HDU 2870 Largest Submatrix
这三道题的关系是这样的,1505是1506的加强版,2870又是1505的加强版 如果按照上面由简到易的顺序来做的话,还是很简单的 这道题的思想就是 枚举+DP 因为某些字符可以变值,所以我们枚举a, ...
- Largest Submatrix(动态规划)
Largest Submatrix Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- POJ 3494 Largest Submatrix of All 1’s
POJ 2796 Feel Good HDU 1506 Largest Rectangle in a Histogram 和这两题一样的方法. #include<cstdio> #incl ...
- POJ-3494 Largest Submatrix of All 1’s (单调栈)
Largest Submatrix of All 1’s Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 8551 Ac ...
- Largest Submatrix of All 1’s
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is the largest? By largest we m ...
- codeforces 407D Largest Submatrix 3
codeforces 407D Largest Submatrix 3 题意 找出最大子矩阵,须满足矩阵内的元素互不相等. 题解 官方做法 http://codeforces.com/blog/ent ...
- Largest Submatrix of All 1’s(思维+单调栈)
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1's which is the largest? By largest we m ...
- POJ 3494 Largest Submatrix of All 1’s 单调队列||单调栈
POJ 3494 Largest Submatrix of All 1’s Description Given a m-by-n (0,1)-matrix, of all its submatrice ...
随机推荐
- run `npm audit fix` to fix them, or `npm audit` for details
问题 added 246 packages from 681 contributors and audited 382 packages in 17.509s found 13 vulnerabili ...
- [UWP 自定义控件]了解模板化控件(10):原则与技巧
1. 原则 推荐以符合以下原则的方式编写模板化控件: 选择合适的父类:选择合适的父类可以节省大量的工作,从UWP自带的控件中选择父类是最安全的做法,通常的选择是Control.ContentContr ...
- [译]通往 Java 函数式编程的捷径
原文地址:An easier path to functional programming in Java 原文作者:Venkat Subramaniam 译文出自:掘金翻译计划 以声明式的思想在你的 ...
- Docker网络解决方案 - Flannel部署记录
Docker跨主机容器间网络通信实现的工具有Pipework.Flannel.Weave.Open vSwitch(虚拟交换机).Calico, 其中Pipework.Weave.Flannel,三者 ...
- 浅谈JS的作用域链(二)
上一篇文章中介绍了Execution Context中的三个重要部分:VO/AO,scope chain和this,并详细的介绍了VO/AO在JavaScript代码执行中的表现. 本文就看看Exec ...
- 基本的排序算法C++实现(插入排序,选择排序,冒泡排序,归并排序,快速排序,最大堆排序,希尔排序)
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/8529525.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- 《移山之道》Reading Task——by12061154Joy
最近因为作业的原因所以接触到了这本书,给我最特别的感觉就是很新鲜,主要是因为这本书是以故事展开的,大概是我读的书太少,基本没有看到过专业书的知识体系是用故事串讲起来的,这样帮助读者理解了一些概念并且不 ...
- 第九次Scrum meeting
第九次Scrum meeting 任务及完成度: 成员 12.31 1.1 陈谋 任务1040:完成stackoverflow的数据处理后的json处理(99%) 任务1114-1:完成对网页数据的 ...
- keras-VGG16 猫狗分类器
keras 原理: keras系列︱图像多分类训练与利用bottleneck features进行微调(三)https://blog.csdn.net/sinat_26917383/article/d ...
- github作业
链接: https://github.com/liuyu13/liuyu13-1 总结:git可以学习的东西还有很多.git协议,分布式协作,git项目管理,git技巧,github的使用和实践, ...