https://loj.ac/problem/6388

矩形匹配,小地图经过位置为1,和大地图匹配不能同时存在一个1的位置,就可以是一个当前位置

1.bitset压位,。。。。O(n^2m^2/64)可过。。

2.NTT字符串匹配

把n*m的大地图拆成长条,小地图放到n*m的左上角,也拆成长条,

两个一维数组匹配,小地图翻转,NTT

统计答案的时候,如果不会出现距离边界的宽度小于小地图宽度的时候,再考虑是否是0

为了避免红色的越界情况

思路就是把矩阵变成一维数组,由于是匹配是mod 2 意义下的乘法,所以NTT

关于一般的NTT匹配字符的问题+通配符:

https://ebola-emperor.blog.luogu.org/solution-p4173

思路就是想方设法得到匹配函数,使得在能够匹配的时候恰好为0,不匹配的时候必须是正数

最小值为0,为0的位置就是匹配位置。

平方就大力拆开,交叉项可以卷积

有点hash感觉

「THUPC2018」赛艇 / Citing的更多相关文章

  1. [loj6388] 「THUPC2018」赛艇 / Citing

    Description ​ 给你一个\(~n \times m~\)的\(~01~\)矩阵,一个人在这个矩阵中走了\(~k~\)步,每一次都往四联通方向中的一个走一步.给定这个人每一步走的方向,已知这 ...

  2. 【LibreOJ】#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop 线段树+完全背包

    [题目]#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop [题意]给定一个长度为n的物品序列,每个物品有价值.不超过m的重量.要求支持以下三种操作:1.物品价值区间加减,2.物 ...

  3. 【LibreOJ】#6392. 「THUPC2018」密码学第三次小作业 / Rsa 扩展欧几里得算法

    [题目]#6392. 「THUPC2018」密码学第三次小作业 / Rsa [题意]T次询问,给定正整数c1,c2,e1,e2,N,求正整数m满足: \(c_1=m^{e_1} \ \ mod \ \ ...

  4. 【LibreOJ】#6395. 「THUPC2018」城市地铁规划 / City 背包DP+Prufer序

    [题目]#6395. 「THUPC2018」城市地铁规划 / City [题意]给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值 ...

  5. LOJ#6387 「THUPC2018」绿绿与串串 / String (Manacher || hash+二分)

    题目描述 绿绿和 Yazid 是好朋友.他们在一起做串串游戏. 我们定义翻转的操作:把一个串以最后一个字符作对称轴进行翻转复制.形式化地描述就是,如果他翻转的串为 RRR,那么他会将前 ∣R∣−1个字 ...

  6. 【LOJ】#6391. 「THUPC2018」淘米神的树 / Tommy

    题解 一道非常神仙的计数题 如果只有一个点,就是非常简单的树型dp \(f_{u} = (siz_{u} - 1)! \prod_{v \in son_{u}} \frac{f_{v}}{siz_{v ...

  7. loj6392 「THUPC2018」密码学第三次小作业 / Rsa

    还是挺好做的,\((e_1,e_2)=1 \Rightarrow e_1s+e_2t=0\),\(m \equiv m^1 \equiv m^{e_1s+e_2t} \equiv c_1^s c_2^ ...

  8. loj6387 「THUPC2018」绿绿与串串 / String

    还是很好做的,大致就是manacher,每个位置为中心的最长回文串要是能抵到最右边就合法,要是能抵到最左边,那这个点的是否合法取决于以这个点为中心的最长回文串的右端点是否合法. #include &l ...

  9. 【LOJ6397】「THUPC2018」蛋糕 / Cake(搜索)

    点此看题面 大致题意: 把一个\(a\times b\times c\times d\)的\(4\)维图形划分成\(a\times b\times c\times d\)个小块,求有\(0\sim8\ ...

随机推荐

  1. C#_反射机制

    一:反射的定义 审查元数据并收集关于它的类型信息的能力.元数据(编译以后的最基本数据单元)就是一大堆的表,当编译程序集或者模块时,编译器会创建一个类定义表,一个字段定义表,和一个方法定义表等. Sys ...

  2. Sql_索引分析

    「索引就像书的目录, 通过书的目录就准确的定位到了书籍具体的内容」,这句话描述的非常正确, 但就像脱了裤子放屁,说了跟没说一样,通过目录查找书的内容自然是要比一页一页的翻书找来的快,同样使用的索引的人 ...

  3. zookeeper Error contacting service 解决

    连接kafka集群,有一个kafka机器连接失败 到该kafka机器上查询kafka进程,发现没有, 再查看zookeeper状态,提示 Error contacting service. It is ...

  4. 手动编写的几个简单的puppet管理配置

    puppet在自动化配置管理方面有很强大的优势,这里就不做过多介绍了,下面记录下几个简单的puppet管理配置: 一.首先在服务端和客户端安装puppet和facter 1)服务端 安装Puppet ...

  5. Shell学习笔记二

    一.调试脚本 调试功能是每一种编程语言都应该实现的重要特性之一,当出现一些始料未及的情况时,用它来生成脚本运行信息.调试信息可以帮你弄清楚是什么原因使得程序发生崩溃或行为异常.每位系统程序员都应该了解 ...

  6. 如何利用Android Studio打包React Native APK

    ok!百度出来的东西很杂,所以,这里介绍一种最简单,最合适我们(新手,应该是吧)的APK的打包方式! 当然!这种打包是基于Android Studio的,所以,注意喽!!!! 废话不多说开始吧! 首先 ...

  7. 矩形A + B HDU2524

    题意 给你n*m的棋盘问有多少个矩形 分析 先看只有一行或一列的情况有1+2+....+n个,因为矩形的类型有1个最小单位格子n个,2个最小单位格子n-1个,n个最小单位格子有一个 code #inc ...

  8. 12.14 Daily Scrum

      Today's Task Tomorrow's Task 丁辛 实现和菜谱相关的餐厅列表. 实现和菜谱相关的餐厅列表.             邓亚梅             美化搜索框UI. 美 ...

  9. Linux内核分析——进程的描述和进程的创建

    进程的描述和进程的创建 一. 进程的描述 (一)进程控制块PCB——task_struct 1.操作系统的三大管理功能包括: (1)进程管理 (2)内存管理 (3)文件系统 2.PCB task_st ...

  10. Can't find model 'en'

    在使用 nlp = spacy.load("en") 报错OSError: Can't find model 'en' 应该用 python -m spacy download e ...