Softmax 损失-梯度计算
本文介绍Softmax运算、Softmax损失函数及其反向传播梯度计算, 内容上承接前两篇博文 损失函数 & 手推反向传播公式。
Softmax 梯度
设有K类, 那么期望标签y形如\([0,0,...0,1,0...0]^T\)的one-hot的形式. softmax层的输出为\([a_1,a_2,...,a_j,...a_K]^T\), 其中第j类的softmax输出为:
a_{j} &= \frac{\exp(z_{j})}{\sum_{k=1}^K \exp(z_{k})} \forall j\in 1...K \\
{\partial a_{j}\over \partial z_{j} } &= {\exp(z_{j})\cdot(\Sigma - \exp(z_{j}) )\over \Sigma^2} = a_j(1 - a_j) \\
{\partial a_{k}\over \partial z_{j} } &= { - \exp(z_{k}) \cdot \exp(z_{j}) \over \Sigma^2} = -a_j a_k \tag{$k\ne j$}
\end{align}
\]
如果是全连接的DNN,那么有: \(z_{j}^{l+1}=\sum_i w_{ij} a_{i}^{l}+b_j^{l+1}\)
\(a_j^{l+1}\)可以解释成观察到的数据 \(a^l\) 属于类别 j 的概率,或者称作似然 (Likelihood)。
求输出对输入的梯度\(\partial a\over \partial z\):
{\partial a\over \partial z_k}=
\begin{bmatrix}
{\partial a_1\over \partial z_k} \\
\vdots \\
{\partial a_k\over \partial z_k} \\
\vdots \\
{\partial a_K\over \partial z_k}
\end{bmatrix}
=
\begin{bmatrix}
-a_1 \\
\vdots \\
(1-a_k) \\
\vdots \\
-a_K
\end{bmatrix}a_k
=
(\begin{bmatrix}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{bmatrix}
-a)a_k
\end{align}
\]
因此损失对输入的梯度为\({\partial E\over \partial z}\):
{\partial E\over \partial z}={\partial E\over \partial a}{\partial a\over \partial z}=({\partial E\over \partial a} - [{\partial E\over \partial a}]^T a)⊙ a
\]
对应的 Caffe 中的SoftmaxLayer的梯度反向传播计算实现代码为:
# dot 表示矩阵乘法, * 表示按对应元素相乘
bottom_diff = (top_diff - dot(top_diff, top_data)) * top_data
Softmax loss 梯度
单样本的损失函数为:
{\partial E\over \partial a_j} = -\sum^K_{k}{y_k\over a_k}\cdot {\partial a_k\over \partial a_j}=-{y_j\over a_j}
\]
接下来求E对w,b的梯度, 过程与反向传播的通用梯度计算公式相同, 这里指定了具体的激活函数(softmax)与损失函数:
{\partial E\over \partial b_j^{l+1}} &= {\partial E\over \partial z_j^{l+1}} = \sum_k{\partial E\over \partial a_k^{l+1}} \cdot {\partial a_k^{l+1}\over \partial z_j^{l+1}} \\
&=-{y_j^{l+1}\over a_j^{l+1}} \cdot a_j^{l+1}(1 - a_j^{l+1})+\sum_{k\ne j}[-{y_k^{l+1}\over a_k^{l+1}} \cdot -a_j^{l+1} a_k^{l+1}] \\
&= -y_j^{l+1}+y_j^{l+1} a_j^{l+1} +\sum_{k\ne j}y_k^{l+1}a_j^{l+1} \\
&= a_j^{l+1}-y_j^{l+1} \\
{\partial E\over \partial w_{ij}^{l+1}} &= {\partial E\over \partial z_j^{l+1}} \cdot {\partial z_j^{l+1}\over w_{ij}^{l+1}}=(a_j^{l+1}-y_j^{l+1})a_i^l
\end{align}
\]
对应的 Caffe 中的SoftmaxWithLossLayer的梯度反向传播计算实现为(\({\partial E\over \partial z}\)):
# prob_data 为前向传播时softmax的结果, label_data 是标签的one-hot表示
bottom_diff = prob_data - label_data
softmax的log似然代价函数(公式求导) https://blog.csdn.net/u014313009/article/details/51045303 ↩︎
Softmax与SoftmaxWithLoss原理及代码详解 https://blog.csdn.net/u013010889/article/details/76343758 ↩︎
数值计算稳定性 http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/ ↩︎
Softmax 损失-梯度计算的更多相关文章
- 实现属于自己的TensorFlow(二) - 梯度计算与反向传播
前言 上一篇中介绍了计算图以及前向传播的实现,本文中将主要介绍对于模型优化非常重要的反向传播算法以及反向传播算法中梯度计算的实现.因为在计算梯度的时候需要涉及到矩阵梯度的计算,本文针对几种常用操作的梯 ...
- 多类 SVM 的损失函数及其梯度计算
CS231n Convolutional Neural Networks for Visual Recognition -- optimization 1. 多类 SVM 的损失函数(Multicla ...
- Theano学习-梯度计算
1. 计算梯度 创建一个函数 \(y\) ,并且计算关于其参数 \(x\) 的微分. 为了实现这一功能,将使用函数 \(T.grad\) . 例如:计算 \(x^2\) 关于参数 \(x\) 的梯度. ...
- 机器学习进阶-图像梯度计算-scharr算子与laplacian算子(拉普拉斯) 1.cv2.Scharr(使用scharr算子进行计算) 2.cv2.laplician(使用拉普拉斯算子进行计算)
1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_6 ...
- pytorch 反向梯度计算问题
计算如下\begin{array}{l}{x_{1}=w_{1} * \text { input }} \\ {x_{2}=w_{2} * x_{1}} \\ {x_{3}=w_{3} * x_{2} ...
- 优化梯度计算的改进的HS光流算法
前言 在经典HS光流算法中,图像中两点间的灰度变化被假定为线性的,但实际上灰度变化是非线性的.本文详细分析了灰度估计不准确造成的偏差并提出了一种改进HS光流算法,这种算法可以得到较好的计算结果,并能明 ...
- TensorFlow 学习(八)—— 梯度计算(gradient computation)
maxpooling 的 max 函数关于某变量的偏导也是分段的,关于它就是 1,不关于它就是 0: BP 是反向传播求关于参数的偏导,SGD 则是梯度更新,是优化算法: 1. 一个实例 relu = ...
- 理解自动梯度计算autograd
理解自动求导 例子 def f(x): a = x * x b = x * a c = a + b return c 基于图理解 代码实现 def df(x): # forward pass a = ...
- [图解tensorflow源码] MatMul 矩阵乘积运算 (前向计算,反向梯度计算)
随机推荐
- linux-镜像下载
https://blog.csdn.net/sinat_36564972/article/details/81560395 Centos6.5镜像下载 2018年08月10日 11:35:53 深夜搬 ...
- vue element ui 导航刷新 is-active
<el-menu :default-active="$route.path" router mode="horizontal"> <el-me ...
- cf946d 怎样逃最多的课dp
来源:codeforces D. Timetable Ivan is a student at Berland ...
- CF367C. Hard problem
链接[http://codeforces.com/group/1EzrFFyOc0/contest/706/problem/C] 题意: 他希望它们按词典顺序排序(就像字典中那样),但他不允许交换其中 ...
- 个人阅读作业——软件工程M1/M2的总结
临近学期末,本学期的软件工程课也已经结束了,在此我对软件工程课中,我们团队M1和M2开发阶段中,我做的工作做一个总结 我是DEV,主要工作是等着上级给我分配任务,但是很多时候如果这个活我不干,其他人就 ...
- M2阶段事后总结
设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述?我们的主要任务是将35w+个符合条件的网页,问答,文章放入数据库:爬取功能定义为以下几种:通用型爬取 ...
- 第七周 linux如何装载和启动一个可执行文件
潘恒 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.实验内容 1.预处理. ...
- linux及安全第八周总结
进程的调度时机与进程的切换 操作系统原理中介绍了大量进程调度算法,这些算法从实现的角度看仅仅是从运行队列中选择一个新进程,选择的过程中运用了不同的策略而已. 对于理解操作系统的工作机制,反而是进程的调 ...
- HDOJ2004_成绩转换
水题:用数组标识各个阶段分数的等级即可. HDOJ2004_成绩转换 #include<stdio.h> #include<stdlib.h> #include<math ...
- spring-web-4.3.3与spring-webmvc-4.3.3的区别
spring-web-4.3.3 http(http协议的实现类)和web包(应用,上下文,会话,cookies,过滤器等等) spring-webmvc-4.3.3 主要是一些view层的核心封装, ...