51Nod 最小公倍数之和V3
这题公式真tm难推……为了这题费了我一个草稿本……
woc……在51Nod上码LaTeX码了两个多小时……
一开始码完了前半段,刚码完后半段突然被51Nod吃了,重新码完后半段之后前半段又被吃了,吓得我赶紧换Notepad++接着写……
有的细节懒得再码了,这么一坨LaTeX估计也够你们看了……
\begin{equation}
ans=\sum_{i=1}^n\sum_{j=1}^n [i,j]\\
=2\sum_{i=1}^n\sum_{j=1}^i [i,j]-\frac{n(n+1)}2\\
Let\space s(n)=\sum_{i=1}^n\sum_{j=1}^i [i,j],f(n)=\sum_{i=1}^n [i,n]\\
f(n)=\sum_{i=1}^n [i,n]\\
=\sum_{i=1}^n\frac{in}{(i,n)}\\
=n\sum_{i=1}^n\frac i{(i,n)}\\
=n\sum_{d|n}\sum_{i=1}^n[(i,n)=d]\frac i d\\
=n\sum_{d|n}\sum_{i=1}^{\frac n d}[(i,\frac n d)=1]i\\
=n\sum_{d|n}\sum_{i=1}^{d}[(i,d)=1]i\\
=n\sum_{d|n}\frac{\phi(d)d+[d=1]}2\\
=n\frac{1+\sum_{d|n}\phi(d)d}2\\
s(n)=\sum_{i=1}^n f(i)\\
=\frac{\sum_{i=1}^n i(1+\sum_{d|i}\phi(d)d)}2\\
=\frac{\sum_{i=1}^n i+\sum_{i=1}^n i\sum_{d|i}\phi(d)d}2\\
=\frac{\frac{n(n+1)}2+\sum_{i=1}^n i\sum_{d|i}\phi(d)d}2\\
=\frac{\frac{n(n+1)}2+\sum_{d=1}^n\phi(d)d\sum_{d|i}i}2\\
=\frac{\frac{n(n+1)}2+\sum_{d=1}^n\phi(d)d^2\sum_{i=1}^{\lfloor\frac n d\rfloor}i}2\\
=\frac{\frac{n(n+1)}2+\sum_{i=1}^n i\sum_{d=1}^{\lfloor\frac n i\rfloor}\phi(d)d^2}2\\
ans=2s(n)-\frac{n(n+1)}2\\
=\sum_{i=1}^n i\sum_{d=1}^{\lfloor\frac n i\rfloor}\phi(d)d^2\\
Let \space h(d)=\phi(d)d^2,g(n)=\sum_{d=1}^nh(d)\\
n=\sum_{d|n}\phi(d)\\
n^3=\sum_{d|n}\phi(d)n^2\\
=\sum_{d|n}\phi(d)d^2(\frac n d)^2\\
=\sum_{d|n}h(d)(\frac n d)^2\\
\sum_{i=1}^n i^3=\sum_{i=1}^n\sum_{d|i}h(d)(\frac i d)^2\\
=\sum_{d=1}^n h(d)\sum_{d|i}(\frac i d)^2\\
=\sum_{d=1}^n h(d)\sum_{i=1}^{\lfloor\frac n d \rfloor}i^2\\
=\sum_{i=1}^n i^2\sum_{d=1}^{\lfloor\frac n i\rfloor}h(d)\\
=\sum_{i=1}^n i^2 g(\lfloor\frac n i\rfloor)\\
g(n)=\sum_{i=1}^n i^3-\sum_{i=2}^ni^2 g(\lfloor\frac n i\rfloor)
\end{equation}
然后就是杜教筛的形式了,上杜教筛即可
\begin{equation}
\sum_{i=1}^n i^3=(\frac{n(n+1)}2)^2\\
\sum_{i=1}^n i^2=\frac{n(n+1)(2n+1)}6\\
ans=\sum_{i=1}^n i g(\lfloor\frac n i\rfloor)
\end{equation}
在外面套上一层分块不会影响复杂度,利用g的定义,筛出$\phi$之后即可算出较小的g,较大的g直接杜教筛算即可,总复杂度$O(n^{\frac 2 3})$
贴两份代码(虽然Python2的代码用Python2和Pypy2交都过不去......):
'''
h(i)=phi(d)*d^2
g(i)=sum{h(j)|1<=j<=i}
g(n)=sum{i^3|1<=i<=n}-sum{i^2*g(n/i)|2<=i<=n}
线筛预处理一部分g,大一些的部分直接上杜教筛即可
s_3(n)=s_1(n)^2,s_2(n)=n(n+1)(2n+1)/6
'''
p=1000000007
table_size=8000000
def get_table(n):
global phi
notp=[False for i in xrange(n+1)]
prime=[]
cnt=0
phi[1]=1
for i in xrange(2,n+1):
if not notp[i]:
prime.append(i)
cnt+=1
phi[i]=i-1
for j in xrange(cnt):
if i*prime[j]>n:
break
notp[i*prime[j]]=True
if i%prime[j]:
phi[i*prime[j]]=phi[i]*(prime[j]-1)
else:
phi[i*prime[j]]=phi[i]*prime[j]
break
for i in xrange(2,n+1):
phi[i]=phi[i]*i*i%p
phi[i]=(phi[i]+phi[i-1])%p
def s1(n):
return (n*(n+1)>>1)%p
def s2(n):
return (n*(n+1)*((n<<1)+1)>>1)/3%p
def S(n):
if n<table_size:
return phi[n]
elif hashmap.has_key(n):
return hashmap[n]
ans=n*(n+1)/2
ans*=ans
ans%=p
i=2
while i<=n:
last=n/(n/i)
#print 'last=%d'%last
ans-=(s2(last)-s2(i-1))*S(n/i)%p
ans%=p
i=last+1
if ans<0:
ans+=p
hashmap[n]=ans
return ans
n=input()
hashmap=dict()
table_size=min(table_size,n)
phi=[0 for i in xrange(table_size+1)]
get_table(table_size)
#print 'table OK'
ans=0
i=1
while i<=n:
last=n/(n/i)
ans+=S(n/i)*(s1(last)-s1(i-1))%p
ans%=p
i=last+1
print ans
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
#define s1(n) ((long long)(n)%p*(((n)+1)%p)%p*inv_2%p)
#define s2(n) ((long long)(n)%p*(((n)+1)%p)%p*((((long long)(n)%p)<<1)%p+1)%p*inv_6%p)
using namespace std;
using namespace __gnu_pbds;
const int table_size=,maxn=table_size+,p=,inv_2=,inv_6=;
void get_table(int);
int S(long long);
bool notp[maxn]={false};
int prime[maxn]={},phi[maxn]={};
gp_hash_table<long long,int>hashmap;
long long n;
int main(){
scanf("%lld",&n);
get_table(min((long long)table_size,n));
int ans=;
for(long long i=,last;i<=n;i=last+){
last=n/(n/i);
ans+=S(n/i)*((s1(last)-s1(i-))%p)%p;
ans%=p;
}
if(ans<)ans+=p;
printf("%d",ans);
return ;
}
void get_table(int n){
phi[]=;
for(int i=;i<=n;i++){
if(!notp[i]){
prime[++prime[]]=i;
phi[i]=i-;
}
for(int j=;j<=prime[]&&i*prime[j]<=n;j++){
notp[i*prime[j]]=true;
if(i%prime[j])phi[i*prime[j]]=phi[i]*(prime[j]-);
else{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for(int i=;i<=n;i++){
phi[i]=(long long)phi[i]*i%p*i%p;
phi[i]=(phi[i]+phi[i-])%p;
}
}
int S(long long n){
if(n<=table_size)return phi[n];
else if(hashmap.find(n)!=hashmap.end())return hashmap[n];
int ans=s1(n)*s1(n)%p;
for(long long i=,last;i<=n;i=last+){
last=n/(n/i);
ans-=S(n/i)*((s2(last)-s2(i-))%p)%p;
ans%=p;
}
if(ans<)ans+=p;
return hashmap[n]=ans;
}
/*
h(i)=phi(d)*d^2
g(i)=sum{h(j)|1<=j<=i}
g(n)=sum{i^3|1<=i<=n}-sum{i^2*g(n/i)|2<=i<=n}
ans=sum{i*g(n/i)|1<=i<=n}
线筛预处理一部分g,大一些的部分直接上杜教筛即可
s_3(n)=s_1(n)^2,s_2(n)=n(n+1)(2n+1)/6
*/
51Nod 最小公倍数之和V3的更多相关文章
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 【51Nod 1238】最小公倍数之和 V3
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1238 设\(A(n)=\sum\limits_{i=1}^n\frac{ ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
- 51Nod 1238 最小公倍数之和V3
题目传送门 分析: 现在我们需要求: \(~~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)\) \(=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac ...
- 51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)
题目 戳这里 推导 ∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j) ∑i=1n∑j=1nlcm(i,j) =∑i=1n∑j= ...
- 51 NOD 1238 最小公倍数之和 V3
原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...
- 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛
题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...
随机推荐
- 重新编译安装swoole支持OpenSSL
1.下载:wget http://pecl.php.net/get/swoole-1.9.22.tgz 2.解压:tar zxvf swoole-1.9.22.tgz 3.扩展模块:cd swoole ...
- Spring集合注入
1.集合注入 上一篇博客讲了spring得属性注入,通过value属性来配置基本数据类型,通过<property>标签的 ref 属性来配置对象的引用.如果想注入多个数据,那我们就要用到集 ...
- 从零开始的程序逆向之路 第一章——认识OD(Ollydbg)以及常用汇编扫盲
作者:Crazyman_Army 原文来自:https://bbs.ichunqiu.com/thread-43041-1-1.html 0×00 序言: 1.自从上次笔者调戏完盗取文件密码大黑客后, ...
- JavaScript 函数式编程读书笔记1
概述 这是我读<javascript函数式编程>的读书笔记,供以后开发时参考,相信对其他人也有用. 说明:虽然本书是基于underscore.js库写的,但是其中的理念和思考方式都讲的很好 ...
- 仿B站项目(3)页面配置
页面配置 B站有很多页面,比如说首页啊,动画页啊,音乐页啊,舞蹈页啊,那就从首页开始. 通过观察首页,可以看见有很多模块除了内容之外,在布局颜色等方面都是一样的,所以我可以开发一些模板或者插件,到时候 ...
- 在Shell脚本中获取指定进程的PID
注意这条命令用反引号(Tab上面的那个键)括起来,作用类似于${ } processId = ` ps -ef | grep fms.jar | grep -v grep | awk '{print ...
- 脚手架vue-cli系列一:安装与规范
我很喜欢Vue的一个重要原因就是因为它的vue-cli,这个工具可以让一个简单的命令行工具来帮助我快速地构建一个足以支撑实际项目开发的Vue环境,并不像Angular和React那样要在Yoman上找 ...
- salesforce lightning零基础学习(九) Aura Js 浅谈二: Event篇
上一篇介绍了Aura Framework中 Component类的部分方法,本篇将要介绍Event常用的方法. 1. setParam (String key , Object value):设置事件 ...
- Spring Boot 解决方案 - 配置
习惯优于配置 Spring Boot 项目的重要思想就是"习惯优于配置",这也是为什么该项目诞生的原因,让开发者免于 Spring 生态中各种项目的配置.尽管如此,但项目中完全零配 ...
- OS开发(2):自定义tabbar | 导航条 | 突显中间按钮
tabbar是放在APP底部的控件,也叫navigationbar或导航条.常见的APP都使用tabbar来进行功能分类的管理,比如微信.QQ等等. 需求是这样的,需要一个特殊一点的tabbar,要求 ...