传送门


值得注意的是一般的DAG的拓扑序列数量是NP问题,所以不能直接入手

题目中给出的图可以看做是一个树形图,虽然方向比较迷。考虑使用树形图的性质

不妨任选一个点为根做树形DP,注意到数的位置与方案数相关,所以也要设在状态内。故设\(f_{i,j}\)表示对于\(i\)及\(i\)的子树所有点构成的拓扑序列,\(i\)排在第\(j\)位的方案数,通过一个儿子一个儿子地合并来转移。

对于当前计算的点\(u\)的某一个儿子\(v\)已经算完,正要和\(u\)合并。设\(sz_u\)表示\(u\)和\(u\)的已合并子树的点数之和,并设\(u < v\),那么序列中\(v\)要在\(u\)的后面。

先枚举\(u\)在已合并序列中的位置\(j\),然后枚举\(v\)的子树对应的拓扑序列中有\(k\)个放在\(u\)的前面,不难得到转移方程:\(dp_{u,j+k} \leftarrow dp_{u,j} \times C_{j-1+k}^k \times C_{sz_u + sz_v - j - k} ^ {sz_v - k} \times \sum\limits_{i=k+1}^{sz_v} dp_{v,k}\)

如果\(u>v\)也是差不多的

前后缀和优化最后的\(\sum dp_{v,k}\)并预处理组合数

关于复杂度,注意到每一次合并的复杂度为"已合并的儿子大小"\(\times\)"当前合并的儿子大小",可以看作任意两个点只会在它们的LCA处产生\(1\)的复杂度,所以总复杂度是\(O(n^2)\)的。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
#include<cassert>
//This code is written by Itst
using namespace std; inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
} const int MOD = 1e9 + 7;
int N , cntEd;
struct Edge{
int end , upEd;
}Ed[2003];
int head[1007] , C[1007][1007] , dp[1007][1007] , sz[1007] , pre[1007][1007] , suf[1007][1007] , tmp[1007]; inline void addEd(int a , int b){
Ed[++cntEd].end = b;
Ed[cntEd].upEd = head[a];
head[a] = cntEd;
} inline char getc(){
char c = getchar();
while(c == ' ' || c == '\n' || c == '\r')
c = getchar();
return c;
} void init(){
C[0][0] = 1;
for(int i = 1 ; i <= 1000 ; ++i){
C[i][0] = 1;
for(int j = 1 ; j <= 1000 ; ++j)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
}
} void dfs(int u , int p){
sz[u] = 1;
dp[u][1] = 1;
for(int i = head[u] ; i ; i = Ed[i].upEd)
if(Ed[i].end != p){
dfs(Ed[i].end , u);
int v = Ed[i].end;
sz[u] += sz[v];
memset(tmp , 0 , sizeof(tmp));
if(i & 1)
for(int j = sz[u] - sz[v] ; j ; --j)
for(int k = 0 ; k < sz[v] ; ++k)
tmp[j + k] = (tmp[j + k] + 1ll * dp[u][j] * suf[v][k + 1] % MOD * C[j + k - 1][k] % MOD * C[sz[u] - j - k][sz[v] - k]) % MOD;
else
for(int j = sz[u] - sz[v] ; j ; --j)
for(int k = 1 ; k <= sz[v] ; ++k)
tmp[j + k] = (tmp[j + k] + 1ll * dp[u][j] * pre[v][k] % MOD * C[j + k - 1][k] % MOD * C[sz[u] - j - k][sz[v] - k]) % MOD;
memcpy(dp[u] , tmp , sizeof(tmp));
}
for(int i = 1 ; i <= sz[u] ; ++i)
pre[u][i] = (pre[u][i - 1] + dp[u][i]) % MOD;
for(int i = sz[u] ; i ; --i)
suf[u][i] = (suf[u][i + 1] + dp[u][i]) % MOD;
} int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
init();
for(int T = read() ; T ; --T){
N = read();
for(int i = 1 ; i < N ; ++i){
int a = read() + 1;
char c = getc();
int b = read() + 1;
if(c == '>')
swap(a , b);
addEd(a , b);
addEd(b , a);
}
dfs(1 , 0);
cout << pre[1][N] << endl;
memset(dp , 0 , sizeof(dp));
memset(pre , 0 , sizeof(pre));
memset(suf , 0 , sizeof(suf));
memset(head , 0 , sizeof(head));
cntEd = 0;
}
return 0;
}
=

Luogu4099 HEOI2013 SAO 组合、树形DP的更多相关文章

  1. 洛谷P4099 [HEOI2013]SAO(树形dp)

    传送门 HEOI的题好珂怕啊(各种意义上) 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关) 我们考虑 ...

  2. P4099 [HEOI2013]SAO(树形dp)

    P4099 [HEOI2013]SAO 我们设$f[u][k]$表示以拓扑序编号为$k$的点$u$,以$u$为根的子树中的元素所组成的序列方案数 蓝后我们在找一个以$v$为根的子树. 我们的任务就是在 ...

  3. 洛谷 P4099 - [HEOI2013]SAO(树形 dp)

    题面传送门 题意: 有一个有向图 \(G\),其基图是一棵树 求它拓扑序的个数 \(\bmod (10^9+7)\) \(n \in [1,1000]\) 如果你按照拓扑排序的方法来做,那恐怕你已经想 ...

  4. 3167: [Heoi2013]Sao [树形DP]

    3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...

  5. [BZOJ3167][P4099][HEOI2013]SAO(树形DP)

    题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...

  6. HDU-4661 Message Passing 树形DP,排列组合

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4661 题意:有n个人呈树状结构,每个人知道一个独特的消息.每次可以让一个人将他所知的所有消息告诉和他相 ...

  7. [HEOI2013]SAO(树上dp,计数)

    [HEOI2013]SAO (这写了一个晚上QAQ,可能是我太蠢了吧.) 题目说只有\(n-1\)条边,然而每个点又相互联系.说明它的结构是一个类似树的结构,但是是有向边连接的,题目问的是方案个数,那 ...

  8. 洛谷$P4099\ [HEOI2013]\ SAO\ dp$

    正解:树形$dp$ 解题报告: 传送门$QwQ$. 考虑设$f_i$表示点$i$的子树内的拓扑序排列方案数有多少个. 发现这样不好合并儿子节点和父亲节点.于是加一维,设$f_{i,j}$表示点$i$的 ...

  9. P4099 [HEOI2013]SAO

    P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...

随机推荐

  1. React中props和state相同点和不同点

    朋友们,我想死你们了,最近这几天忙着和病魔作斗争所以没怎么写博客,今天感觉好点了,赶紧来写一波,就是这木敬业. 今天我们来讨论讨论props和state相同点和不同点 首先我来概要说明一下这两者 pr ...

  2. 使用CSS兄弟选择器完成复杂垂直边距(vertical margins)的设计

    -------------------sibling选择器如何在完成复杂设计要求的同时,保持CSS可读 这是web前端开发过程中开始简单逐步变的复杂的例子之一:将一篇文章中的所有元素应用垂直边距(ve ...

  3. (网页)js最新手机号码、电话号码正则表达式

    正则表达式(regular expression)是一个描述字符模式的对象.使用JavaScript正则表达式可以进行强大的模式匹配和文本检索与替换功能. 手机号码正则表达式验证. function ...

  4. node中__dirname、__filename、process.cwd()、process.chdir()表示的路径

    直接上结论:__dirname 表示当前文件所在的目录的绝对路径__filename 表示当前文件的绝对路径module.filename ==== __filename 等价process.cwd( ...

  5. jmeter 压力测试

    转自: https://blog.csdn.net/cbzcbzcbzcbz/article/details/78023327 Jmeter压力测试简单教程(包括服务器状态监控) 2017年09月18 ...

  6. [20171130]关于rman备份疑问.txt

    [20171130]关于rman备份疑问.txt --//前面测试太乱,重新做一些rman as copy相关测试. 1.环境:SCOTT@book> @ &r/ver1PORT_STR ...

  7. SpringBoot整合Rabbitmq设置消息请求头

    String str = "{\"origin\":\"BBC\",\"origin_coupon_id\":51,\" ...

  8. httpd服务器的真实ip获取难题

    web服务器httpd中想要获取真正的ip是个难度,我们先要在配置文件中定义错误日志的格式:如下所示: 然后获取ip 上面三条输出日志中,第一条是直接访问http://172.16.213.157/i ...

  9. 使用if语句时应注意的问题(初学者)

    (1)在三种形式的if语句中,在if关键字之后均为表达式.该表达式通常是逻辑表达式或关系表达式,但也可以是其他表达式,如赋值表达式等,甚至也可以是一个变量. 例:if(a=5)语句: if(b)语句: ...

  10. Java设计模式之十二 ---- 备忘录模式和状态模式

    前言 在上一篇中我们学习了行为型模式的策略模式(Strategy Pattern)和模板模式(Template Pattern).本篇则来学习下行为型模式的两个模式,备忘录模式(Memento Pat ...