[poj P2411] Mondriaan's Dream

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 18023   Accepted: 10327

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205

Source

 
哎,我好弱啊。。。
一个状压DP都想不到。。。
先列出总转移方程:f[i][j]=sigma(ok(j,k))f[i-1][k]。
其中j,k是二进制状态,i是第几行。
那么,我们无非就是考虑第i行和第i-1行的状态是否兼容。
如何判断是否兼容?
对于两行k,k+1两个状态,第i位分别为u和d。
我们设状态里面“1”表示当前的格子已经被填了,且是被上一行填入;“0”表示未被填。
如果u==1且d==0,我们可以只能跳到下一列进行判断;否则,
如果u==1且d==1,显然这个状态是不合法的;否则,
如果u==0且d==0,那么上面那一行的下一列必定填入一个横排(且当前为0,表示还没有被填入),我们可以将它当做是被上一行填入的(即更改k行下一列的状态,0->1);否则
如果u==0且d==1,显然正好是当前列放一块竖的。
code:
 #include<cstdio>
 #include<cstring>
 #include<algorithm>
 #include<vector>
 #define LL long long
 #define idx(x,i) ((x>>i)&1)
 using namespace std;
 ;
 <<lim];
 vector <<<lim];
 bool jug(int su,int sd) {
     ; i<m; i++) {
         int ku=idx(su,i),kd=idx(sd,i);
         if (!kd&&ku) continue;
         ; else
         if (!kd) {
             &&!idx(su,i+)) su|=<<(i+); ;
         }
     }
     ;
 }
 int main() {
     while (scanf("%d%d",&n,&m),n|m) {
         S=<<m;
         ; i<S; i++) o[i].clear();
         ; i<S; i++)
             ; j<S; j++) if (jug(i,j)) o[j].push_back(i);
         memset(f,,][]=;
         ; i<=n; i++)
             ; j<S; j++)
                 ,s=o[j].size(); k<s; k++)
                 f[i][j]+=f[i-][o[j][k]];
         printf(]);
     }
     ;
 }

[poj P2411] Mondriaan's Dream的更多相关文章

  1. PKU P2411 Mondriaan's Dream

    PKU P2411 Mondriaan's Dream 题目描述: Squares and rectangles fascinated the famous Dutch painter Piet Mo ...

  2. POJ 2411 Mondriaan's Dream -- 状压DP

    题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...

  3. POJ 2411 Mondriaan's Dream 插头dp

    题目链接: http://poj.org/problem?id=2411 Mondriaan's Dream Time Limit: 3000MSMemory Limit: 65536K 问题描述 S ...

  4. POJ - 2411 Mondriaan's Dream(轮廓线dp)

    Mondriaan's Dream Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nig ...

  5. [POJ] 2411 Mondriaan's Dream

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 18903 Accepted: 10779 D ...

  6. [poj 2411]Mondriaan's Dream (状压dp)

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 18903 Accepted: 10779 D ...

  7. Poj 2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...

  8. Poj 2411 Mondriaan's Dream(压缩矩阵DP)

    一.Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, ...

  9. poj 2411 Mondriaan's Dream(状态压缩dp)

    Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...

随机推荐

  1. varnish缓存系统基础知识

    缓存系统类型 1.页面缓存/pageCache     缓存静态资源(html js css image)  例如:varnish    squid 2.数据缓存/dataCache      缓存应 ...

  2. python基础(11)-常用模块

    re(正则)模块 常用方法 findall() 以列表返回所有满足条件的结果 import re print(re.findall('\d','a1b2c2abc123'))#['1', '2', ' ...

  3. abap 断言

    1: Assert equal http://www.saptechnical.com/Tutorials/OOPS/ABAPUnit/Index.htm

  4. DAX/PowerBI系列 - 参数表(Parameter Table) 度量值模板

    DAX/PowerBI系列 - 参数表(Parameter Table) 度量值模板 难度: ★★☆☆☆(2星) 适用范围: ★★★☆☆(3星) 概况: 当你有多个度量值都需要计算YTD,MoM,而又 ...

  5. PHP多维数组转一维

    目录 1. array_column函数 2. array_walk函数 3. array_map函数 4. foreach循环 5. array_map变种 参考:https://www.awaim ...

  6. 2019年度【计算机视觉&机器学习&人工智能】国际重要会议汇总

    简介 每年全世界都会举办很多计算机视觉(Computer Vision,CV). 机器学习(Machine Learning,ML).人工智能(Artificial Intelligence ,AI) ...

  7. gateway + jwt 网关认证

    思路: 全局过滤器对所有的请求拦截(生成token有效期30分钟,放入redis设置有效期3天.3天之类可以通过刷新接口自动刷新,超过3天需要重新登录.) 前端在调用接口之前先判断token是否过期( ...

  8. Vue将px转化为rem适配移动端

    Vue将px转化为rem适配移动端 1.下载lib-flexible我使用的是vue-cli+webpack,所以是通过npm来安装的npm i lib-flexible --save 2.引入lib ...

  9. iptables 扩展匹配 第三章

    获取帮助: centos 6 :man iptables centos 7: man iptables-extensions 扩展匹配: 隐式扩展:当使用-p指定某一协议之后,协议自身所支持的扩展就叫 ...

  10. Python 匿名变量

    匿名变量的使用 calc = lambda x:x*3 print(calc(3)) 注:匿名变量是没有名字的变量 注:使用:lambda 创建.