Luogu4221 WC2018州区划分(状压dp+FWT)
合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通。显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了。
考虑状压dp。设f[S]为S集合所有划分方案的满意度之和,枚举子集转移,则有f[S]=Σg[S']*f[S^S']*(sum[S']/sum[S])p (S'⊆S),其中g[S]为S集合是否合法,sum[S]为S集合人口数之和。复杂度O(3n)。这个式子非常显然,就这么送了50分。p这么小显得非常奇怪但也没有任何卵用。
考虑优化。转移方程写的更优美一点大约是f[S]=Σf[x]*g[y]/h[S] (x|y=S,x&y=0)。看起来像是一个或卷积,但还有后面一个限制。考虑在x|y=S的前提下,x&y=0实际上相当于|x|+|y|=|S|。于是稍微改一下状态,f[i][S]为i个点所选点集为S时的满意度之和(虽然第一维显然是可以由第二维推出的),g同样更改状态,这样转移就是f[i][S]=Σf[u][x]*g[v][y]/h[S] (x|y=S,u+v=i)。暴力枚举第一维u,FWT做或卷积即可,复杂度O(2n·n2)。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 21
#define P 998244353
#define rep(i,t,S) for (int t=S,i=lg2[t&-t];t;t^=t&-t,i=lg2[t&-t])
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p,a[N][N],w[N],fa[N],degree[N],lg2[<<N],sum[<<N],size[<<N],f[N+][<<N],g[N+][<<N];
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int inv(int a){return ksm(a,P-);}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
void get()
{
for (int i=;i<n;i++) lg2[<<i]=i;
for (int i=;i<(<<n);i++)
{
sum[i]=sum[i^(i&-i)]+w[lg2[i&-i]];
size[i]=size[i^(i&-i)]+;
rep(x,u,i) fa[x]=x,degree[x]=;
rep(x,u,i)
{
rep(y,v,i) if (a[x][y]) degree[x]^=,fa[find(x)]=find(y);
if (degree[x]) {g[size[i]][i]=;break;}
}
int f=-;
rep(x,u,i) if (f==-) f=find(x);else if (f!=find(x)) {g[size[i]][i]=;break;}
}
for (int i=;i<(<<n);i++) sum[i]=ksm(sum[i],p),g[size[i]][i]*=sum[i];
}
void FWT(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
if (!op) a[k+(i>>)]=(a[k+(i>>)]+a[k])%P;
else a[k+(i>>)]=(a[k+(i>>)]-a[k]+P)%P;
}
void solve()
{
f[][]=;
FWT(f[],<<n,);
for (int i=;i<=n;i++) FWT(g[i],<<n,);
for (int i=;i<=n;i++)
{
for (int j=;j<(<<n);j++)
for (int x=;x<i;x++)
f[i][j]=(f[i][j]+1ll*f[x][j]*g[i-x][j])%P;
FWT(f[i],<<n,);
for (int j=;j<(<<n);j++)
if (size[j]==i) f[i][j]=1ll*f[i][j]*inv(sum[j])%P;
FWT(f[i],<<n,);
}
FWT(f[n],<<n,);
cout<<f[n][(<<n)-];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),p=read();
for (int i=;i<=m;i++)
{
int x=read()-,y=read()-;
a[x][y]=a[y][x]=;
}
for (int i=;i<n;i++) w[i]=read();
get();
solve();
return ;
}
Luogu4221 WC2018州区划分(状压dp+FWT)的更多相关文章
- [WC2018]州区划分(状压DP+FWT/FMT)
很裸的子集反演模板题,套上一些莫名其妙的外衣. 先预处理每个集合是否合法,再作显然的状压DP.然后发现可以写成子集反演的形式,直接套模板即可. 子集反演可以看这里. 子集反演的过程就是多设一维代表集合 ...
- UOJ348 WC2018 州区划分 状压DP、欧拉回路、子集卷积
传送门 应该都会判欧拉回路吧(雾 考虑状压DP:设\(W_i\)表示集合\(i\)的点的权值和,\(route_i\)表示点集\(i\)的导出子图中是否存在欧拉回路,\(f_i\)表示前若干个城市包含 ...
- 【UOJ348】【WC2018】州区划分 状压DP FWT
题目大意 给定一个\(n\)个点的无向图,对于每种 \(n\) 个点的划分\(\{S_1,S_2,\ldots,S_k\}\),定义它是合法的,当且仅当每个点都在其中的一个集合中且对于任何的\(i\i ...
- UOJ #348 州区划分 —— 状压DP+子集卷积
题目:http://uoj.ac/problem/348 一开始可以 3^n 子集DP,枚举一种状态的最后一个集合是什么来转移: 设 \( f[s] \) 表示 \( s \) 集合内的点都划分好了, ...
- 集合划分状压dp
给一个 $n$ 个点 $m$ 条边的无向图,每条边有 $p_i$ 的概率消失,求图连通的概率 $n \leq 9$ sol: 我们考虑一个 $dp$ $f_{(i,S)}$ 表示只考虑前 $i$ 条边 ...
- P4221 [WC2018]州区划分 无向图欧拉回路 FST FWT
LINK:州区划分 把题目中四个条件进行规约 容易想到不合法当前仅当当前状态是一个无向图欧拉回路. 充要条件有两个 联通 每个点度数为偶数. 预处理出所有状态. 然后设\(f_i\)表示组成情况为i的 ...
- [WC2018]州区划分——FWT+DP+FST
题目链接: [WC2018]州区划分 题目大意:给n个点的一个无向图,点有点权,要求将这n个点划分成若干个部分,每部分合法当且仅当这部分中所有点之间的边不能构成欧拉回路.对于一种划分方案,第i个部分的 ...
- [WC2018]州区划分(FWT,FST)
[WC2018]州区划分(FWT,FST) Luogu loj 题解时间 经典FST. 在此之前似乎用到FST的题并不多? 首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可. 考 ...
- [WC2018]州区划分(FWT)
题目描述 题解 这道题的思路感觉很妙. 题目中有一个很奇怪的不合法条件,貌似和后面做题没有什么关系,所以我们先得搞掉它. 也就是判断一个点集是否合法,也就是判断这个点集是否存在欧拉回路. 如果存在欧拉 ...
随机推荐
- ubuntu 下使用 jsoncpp库
做项目的时候需要用c++解析json文件, 之前使用的是libjson 库, 但当g++ 开启 -std=c++11 选项时, 该库的很多功能不能用, 而且还有一些其他的问题, 不推荐使用. 后来采用 ...
- 《Google软件测试之道》测试工程师
愿和我一样读过这本书的人有所共鸣或者启发,愿没读过这本书的人,能获得一点点收获... 说到软件测试工程师,首先我们需要明白一个问题,软件测试工程师的职责是什么? 关于这个话题,不同的人有不同的定义:抛 ...
- <转>浏览器缓存机制
本篇博客转载自github,原文地址:浏览器缓存篇 前言 在前端开发中,缓存有利于加快网页的加载速度,同时缓存能够被反复利用,所以可以减少流量和带宽的开销. 缓存的分类有很多种,CDN缓存.数据库缓存 ...
- 《Google软件测试之道》简介
<Google软件测试之道>,一直听朋友讲起这本书,出于琐事太多,一直没机会拜读,最近部门架构觉得我们IT部门的技术太low,就给我们挑选了一些书籍,让我们多看看... 个人的一种学习习惯 ...
- Android中AsyncTask的使用
原文 https://blog.csdn.net/liuhe688/article/details/6532519 在Android中实现异步任务机制有两种方式,Handler和AsyncTask. ...
- WIFI底座
自己贴片的51+WIFI的开发板终于到了..还是贴片的好看 美中不足的是需要改一个电阻的阻值..还有就是由于自己的8266和51单片机一块断电上电,所以如果用的USB线的质量不好就会出现 下载不了程序 ...
- Image Restoration[Deep Image Prior]
0.背景 这篇论文是2017年11月29号第一次提交到arxiv并紧接着30号就提交了V2版本的. 近些年DCNN模型在图像生成和修复上面表现很好,大部分人认为好的原因主要是由于网络基于大量的图片训练 ...
- 5个python爬虫教材,让小白也有爬虫可写,含视频教程!
认识爬虫 网络爬虫,如果互联网是一张蜘蛛网,网络爬虫既是一个在此网上爬行的蜘蛛,爬了多少路程即获取到多少数据. python写爬虫的优势 其实以上功能很多语言和工具都能做,但是用python爬 ...
- ajax上传文件以及实现上传进度条(转载)
做微信企业号的时候,在‘我的日志'功能模块里边需要添加一个上传文件的功能,并且要显示上传过程中的进度条和提交后的文件名列表,于是做了基于ajax的文件上传,UI用的是MUI框架,后台是TP框架 前端代 ...
- Luogu4774 NOI2018 屠龙勇士 ExCRT
传送门 原来NOI也会出裸题啊-- 用multiset求出对付每一个BOSS使用的武器威力\(ATK_i\),可以得到\(m\)个式子\(ATK_ix \equiv a_i \mod p_i\) 看起 ...