BZOJ2173 整数的lqp拆分(生成函数)
首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少。(虽然不用递推式也能显然地知道答案是2n-1)。
类似地,lqp拆分有递推式f(n)=Σf(i)fib(n-i) (i=0~n-1)。由乘法分配律就可以推出。特别地,f(0)=1。
又是一个卷积。是不是可以直接算了?啊要分治FFTn有1e6而且还不是NTT模数……肯定跑不过去啊。于是考虑生成函数。
设其生成函数为F(x),斐波拉契数列的生成函数为FIB(x)。则F(x)=F(x)·FIB(x)+1。因为f(0)=1是我们的特殊规定所以补上1。即有F(x)=1/(1-FIB(x))。
考虑求出FIB(x)的有限表示。可以把fib(n)的递推式也看做卷积。设a1=1,a2=1,则有fib(n)=Σfib(i)a(n-i) (i=0~n-1)。而a的生成函数为A(x)=x+x2。那么有FIB(x)=FIB(x)·A(x)+x。有FIB(x)=x/(1-A(x))=x/(1-x-x2)。于是代入得F(x)=1/[1-x/(1-x-x2)]=1-x/(x2+2x-1)。
这个求出来……多项式求逆?照样爆炸啊。
据说可以用特征根。然而那是啥玩意啊?
推了半天……不如打表!
则显然f(n)=2f(n-1)+f(n-2)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
#define N 1000010
int n,f[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2173.in","r",stdin);
freopen("bzoj2173.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read();
f[]=,f[]=;
for (int i=;i<=n;i++) f[i]=((f[i-]<<)%P+f[i-])%P;
cout<<f[n];
return ;
}
BZOJ2173 整数的lqp拆分(生成函数)的更多相关文章
- [BZOJ2173]整数的lqp拆分
[题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am ...
- 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]
传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...
- 打表\数学【bzoj2173】: 整数的lqp拆分
2173: 整数的lqp拆分 Description lqp在为出题而烦恼,他完全没有头绪,好烦啊- 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意 ...
- BZOJ 2173: 整数的lqp拆分( dp )
靠着暴力+直觉搞出递推式 f(n) = ∑F(i)f(n-i) (1≤i≤n) (直接想大概也不会很复杂吧...). f(0)=0 感受一下这个递推式...因为和斐波那契有关..我们算一下f(n)+f ...
- BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分
整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 , ...
- 整数的lqp拆分
题目大意 lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am&g ...
- [国家集训队]整数的lqp拆分
我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^ ...
- 洛谷4451 整数的lqp拆分(生成函数)
比较水的一题.居然是一道没看题解就会做的黑题…… 题目链接:洛谷 题目大意:定义一个长度为 $m$ 的正整数序列 $a$ 的价值为 $\prod f_{a_i}$.($f$ 是斐波那契数)对于每一个 ...
- 洛谷P4451 [国家集训队]整数的lqp拆分(生成函数)
题面 传送门 题解 我对生成函数一无所知 我们设\(F(x)\)为斐波那契数列的生成函数,\(G(x)\)为答案的生成函数,那么容易得到递推关系 \[g_n=\sum_{i=0}^{n-1}f_ig_ ...
随机推荐
- 高速LVDS电平简介
一.LVDS简介 1.1.LVDS信号介绍LVDS:Low Voltage Differential Signaling,低电压差分信号.LVDS传输支持速率一般在155Mbps(大约为77MHZ)以 ...
- SSM+BootStrap增删改查,以及头像上传
先看界面 点击编辑之后 具体代码请往下看 一.jsp界面 <%@ page language="java" contentType="text/html; char ...
- 【LeetCode225】 Implement Stack using Queues★
1.题目 2.思路 3.java代码 import java.util.LinkedList; import java.util.Queue; public class MyStack { priva ...
- CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表
传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...
- JS-JS作用域问题
一. js没有块级作用域(可以自己闭包或其他方法实现),只有函数级作用域,函数外面的变量函数里面可以找到,函数里面的变量外面找不到. var a=10; function fn(){ console. ...
- 在属性property做一些简单的验证
开发C#的程序,写到属性property时,我们可以在Set方法中做一些简单的规则验证: 如下面,Insus.NET写一个Age属性,只允许用户输入10以内的数字: class AA { privat ...
- wpf项目打开多个窗体在任务栏只有一个任务
原文:wpf项目打开多个窗体在任务栏只有一个任务 如果在wpf里,在一个父窗体上打开子窗体,只在任务栏显示一个任务,不是qq聊天窗口俩人聊天人显示俩给那样,只能显示 一个 private void B ...
- 请允许我转载一篇关于套接字的博客:Socket
这一篇文章,我将图文并茂地介绍Socket编程的基础知识,我相信,如果你按照步骤做完实验,一定可以对Socket编程有更好地理解. 本文源代码,可以通过这里下载 http://files.cnblog ...
- [Oracle][DataGuard]Standby数据库文件有损坏时的处理方法
需要参考: [Oracle]Recovering the primary database's datafile using the physical standby, and vice versa ...
- 案例学python——案例二:连接数据库MySql
调侃的话:案例一跑完之后,欣赏把玩了一番.人就有点飘飘然,昨天除了做饭吃饭,就是玩三国杀,江郎才尽,今天周一,不飘了,敲点代码,看看Python操作数据库有啥不一样的. 前期准备: 1.数据库 电脑上 ...