首先有序整数拆分有个显然的递推式是g(n)=Σg(i) (i=0~n-1),即枚举加入最后一个数之前和是多少。(虽然不用递推式也能显然地知道答案是2n-1)。

  类似地,lqp拆分有递推式f(n)=Σf(i)fib(n-i) (i=0~n-1)。由乘法分配律就可以推出。特别地,f(0)=1。

  又是一个卷积。是不是可以直接算了?啊要分治FFTn有1e6而且还不是NTT模数……肯定跑不过去啊。于是考虑生成函数。

  设其生成函数为F(x),斐波拉契数列的生成函数为FIB(x)。则F(x)=F(x)·FIB(x)+1。因为f(0)=1是我们的特殊规定所以补上1。即有F(x)=1/(1-FIB(x))。

  考虑求出FIB(x)的有限表示。可以把fib(n)的递推式也看做卷积。设a1=1,a2=1,则有fib(n)=Σfib(i)a(n-i)  (i=0~n-1)。而a的生成函数为A(x)=x+x2。那么有FIB(x)=FIB(x)·A(x)+x。有FIB(x)=x/(1-A(x))=x/(1-x-x2)。于是代入得F(x)=1/[1-x/(1-x-x2)]=1-x/(x2+2x-1)。

  这个求出来……多项式求逆?照样爆炸啊。

  据说可以用特征根。然而那是啥玩意啊?

  推了半天……不如打表!

  则显然f(n)=2f(n-1)+f(n-2)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
#define N 1000010
int n,f[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2173.in","r",stdin);
freopen("bzoj2173.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read();
f[]=,f[]=;
for (int i=;i<=n;i++) f[i]=((f[i-]<<)%P+f[i-])%P;
cout<<f[n];
return ;
}

BZOJ2173 整数的lqp拆分(生成函数)的更多相关文章

  1. [BZOJ2173]整数的lqp拆分

    [题目描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am ...

  2. 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]

    传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...

  3. 打表\数学【bzoj2173】: 整数的lqp拆分

    2173: 整数的lqp拆分 Description lqp在为出题而烦恼,他完全没有头绪,好烦啊- 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意 ...

  4. BZOJ 2173: 整数的lqp拆分( dp )

    靠着暴力+直觉搞出递推式 f(n) = ∑F(i)f(n-i) (1≤i≤n) (直接想大概也不会很复杂吧...). f(0)=0 感受一下这个递推式...因为和斐波那契有关..我们算一下f(n)+f ...

  5. BZOJ 2173 luoguo P4451 [国家集训队]整数的lqp拆分

    整数的lqp拆分 [问题描述] lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 , ...

  6. 整数的lqp拆分

    题目大意 lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分.整数拆分是个很有趣的问题.给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am&g ...

  7. [国家集训队]整数的lqp拆分

    我们的目标是求$\sum\prod_{i=1}^m F_{a_i}$ 设$f(i) = \sum\prod_{j=1}^i F_{a_j}$那么$f(i - 1) = \sum\prod_{j=1}^ ...

  8. 洛谷4451 整数的lqp拆分(生成函数)

    比较水的一题.居然是一道没看题解就会做的黑题…… 题目链接:洛谷 题目大意:定义一个长度为 $m$ 的正整数序列 $a$ 的价值为 $\prod f_{a_i}$.($f$ 是斐波那契数)对于每一个 ...

  9. 洛谷P4451 [国家集训队]整数的lqp拆分(生成函数)

    题面 传送门 题解 我对生成函数一无所知 我们设\(F(x)\)为斐波那契数列的生成函数,\(G(x)\)为答案的生成函数,那么容易得到递推关系 \[g_n=\sum_{i=0}^{n-1}f_ig_ ...

随机推荐

  1. java 学习------helloword 程序测试

    1.新建一个helloword.java  文件 2.在新建的helloword.java 文件中添加以下代码 class helloWord { public static void main(St ...

  2. 用statefulSet 部署持久化的OA(Tomcat)

    1.部署多个副本的OA(Tomcat)集群,其中一个Tomcat的需要加一个定时器,其他代码跟其他的Tomcat的代码一样.需要重启后也还是保持这个状态.代码如下: apiVersion: v1 ki ...

  3. LED灯珠散热的计算方法

    LED灯珠散热的计算方法 来源: 时间:2014-09-23 13:55 [编辑:lufieliu] [字体:大 中 小] 我来说两句   一.热对LED的影响 1.LED是冷光源吗? (1)LED的 ...

  4. SAAS云平台搭建札记: (一) 浅论SAAS多租户自助云服务平台的产品、服务和订单

    最近在做一个多租户的云SAAS软件自助服务平台,途中遇到很多问题,我会将一些心得.体会逐渐分享出来,和大家一起探讨.这是本系列的第一篇文章. 大家知道,要做一个全自助服务的SAAS云平台是比较复杂的, ...

  5. 校内模拟赛 Zbq's Music Challenge

    Zbq's Music Challenge 题意: 一个长度为n的序列,每个位置可能是1或者0,1的概率是$p_i$.对于一个序列$S$,它的得分是 $$BasicScore=A\times \sum ...

  6. hibernate 解决 java.lang.NoClassDefFoundError: org/hibernate/cfg/Configuration

    参考:https://stackoverflow.com/questions/9851528/java-lang-noclassdeffounderror-org-hibernate-cfg-conf ...

  7. (9)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- JWT算法

    一. JWT 简介 内部 Restful 接口可以“我家大门常打开”,但是如果要给 app 等使用的接口,则需要做权限校验,不能谁都随便调用. Restful 接口不是 web 网站,App 中很难直 ...

  8. python 小问题收集

    1,python安装sqlclient yum install python36u python36u-devel yum install gcc mariadb-devel pip3 install ...

  9. Zabbix监控系统部署:配置详解

    1. 全局配置 ListenPort ,监听端口 ,取值范围为1024-32767,默认端口10051 SourceIP,外发连接源地址 LogType,日志类型:单独日志文件,系统文件,控制台输出 ...

  10. centos7下/etc/rc.local文件里配置的开机启动项不执行的解决办法

    习惯于在/etc/rc.local文件里配置我们需要开机启动的服务,这个在centos6系统下是正常生效的.但是到了centos7系统下,发现/etc/rc.local文件里的开机启动项不执行了!仔细 ...