BZOJ2588Count on a tree——LCA+主席树
题目描述
输入
输出
M行,表示每个询问的答案。最后一个询问不输出换行符
样例输入
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5 1
0 5 2
10 5 3
11 5 4
110 8 2
样例输出
8
9
105
7
提示
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mid (L+R)/2
using namespace std;
int ans;
int tot;
int cnt;
int anc;
int n,m,q;
int x,y,z;
int d[100010];
int v[100010];
int h[100010];
int l[3000010];
int r[3000010];
int to[200010];
int head[100010];
int next[200010];
int sum[3000010];
int root[100010];
int f[100010][20];
map<int,int>b;
void add(int x,int y)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
}
int lca(int x,int y)
{
if(d[x]<d[y])
{
swap(x,y);
}
int dep=d[x]-d[y];
for(int i=0;i<=19;i++)
{
if((dep&(1<<i))!=0)
{
x=f[x][i];
}
}
if(x==y)
{
return x;
}
for(int i=19;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
int updata(int pre,int L,int R,int k)
{
int rt=++cnt;
l[rt]=l[pre];
r[rt]=r[pre];
sum[rt]=sum[pre]+1;
if(L==R)
{
return rt;
}
else
{
if(k<=mid)
{
l[rt]=updata(l[pre],L,mid,k);
}
else
{
r[rt]=updata(r[pre],mid+1,R,k);
}
}
return rt;
}
int query(int x,int y,int anc,int fa,int L,int R,int k)
{
if(L==R)
{
return b[L];
}
int num=sum[l[x]]+sum[l[y]]-sum[l[anc]]-sum[l[fa]];
if(num>=k)
{
return query(l[x],l[y],l[anc],l[fa],L,mid,k);
}
else
{
return query(r[x],r[y],r[anc],r[fa],mid+1,R,k-num);
}
}
void dfs(int x,int fa)
{
d[x]=d[fa]+1;
int k=lower_bound(h+1,h+1+m,v[x])-h;
b[k]=v[x];
root[x]=updata(root[fa],1,n,k);
for(int i=1;i<=19;i++)
{
f[x][i]=f[f[x][i-1]][i-1];
}
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa)
{
f[to[i]][0]=x;
dfs(to[i],x);
}
}
}
int main()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
{
scanf("%d",&v[i]);
h[i]=v[i];
}
sort(h+1,h+1+n);
m=unique(h+1,h+1+n)-h-1;
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(1,0);
for(int i=1;i<=q;i++)
{
scanf("%d%d%d",&x,&y,&z);
x=x^ans;
anc=lca(x,y);
ans=query(root[x],root[y],root[anc],root[f[anc][0]],1,n,z);
printf("%d\n",ans);
}
}
BZOJ2588Count on a tree——LCA+主席树的更多相关文章
- [BZOJ2588]Count on a tree(LCA+主席树)
题面 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问 ...
- 【bzoj2588/P2633】count on a tree —— LCA + 主席树
(以下是luogu题面) 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问 ...
- BZOJ 2588: Spoj 10628. Count on a tree( LCA + 主席树 )
Orz..跑得还挺快的#10 自从会树链剖分后LCA就没写过倍增了... 这道题用可持久化线段树..点x的线段树表示ROOT到x的这条路径上的权值线段树 ----------------------- ...
- 【BZOJ2588】Count On a Tree(主席树)
[BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...
- LCA+主席树 (求树上路径点权第k大)
SPOJ 10628. Count on a tree (树上第k大,LCA+主席树) 10628. Count on a tree Problem code: COT You are given ...
- Count on a tree 树上主席树
Count on a tree 树上主席树 给\(n\)个树,每个点有点权,每次询问\(u,v\)路径上第\(k\)小点权,强制在线 求解区间静态第\(k\)小即用主席树. 树上主席树类似于区间上主席 ...
- hdu 5274 Dylans loves tree(LCA + 线段树)
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- BZOJ_1803_Spoj1487 Query on a tree III_主席树+dfs序
BZOJ_1803_Spoj1487 Query on a tree III_主席树 Description You are given a node-labeled rooted tree with ...
- 【bzoj3123】[Sdoi2013]森林 倍增LCA+主席树+启发式合并
题目描述 输入 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负 ...
随机推荐
- linux下打包压缩和解压命令
.tar 压缩:tar cvf FileName.tar FileName 解压:tar xvf FileName.tar .gz解压1:gunzip FileName.gz解压2:gzip -d F ...
- 初识Identity(二)
本文参考了[ASP.NET Identity系列教程(一)]ASP.NET Identity入门 一.Identity使用前准备项目 本文创建了一个名称为Users的项目.在创建过程中选择了“Empt ...
- BZOJ 2810 [Apio2012]kunai
Orz Starria 现在看来,也不是很难,能做...就是不能写 可以想到维护每个苦无扫过的矩形,然后做矩形面积并即可. 然后发现自己只会$n^2$的处理方法... 想了好久之后问了一发 Starr ...
- Luogu4899 IOI2018 Werewolf 主席树、Kruskal重构树
传送门 IOI强行交互可还行,我Luogu的代码要改很多才能交到UOJ去-- 发现问题是对边权做限制的连通块类问题,考虑\(Kruskal\)重构树进行解决. 对于图上的边\((u,v)(u<v ...
- 初始化应用程序数据ng-init指令
ng-init指令初始化应用程序数据. 如果我们想给文本框一个初化的值: <div ng-app="" ng-init="Name='Leo'"> ...
- International Programming Retreat Day(2018.11.17)
时间:2018.11.17地点:北京国华投资大厦
- 安卓自动化测试案例(跑在MonkeyRunner上)
首先文件所在目录: MonkeyRunner所在目录: 运行命令(通过cd 命令 进入Tools目录下): 运行脚本:monkeyrunner.bat ..\honeywell\jsq.py 源文件 ...
- Luogu P3990 [SHOI2013]超级跳马
这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...
- Redis常用操作-------List(列表)
1.BLPOP key [key ...] timeout BLPOP 是列表的阻塞式(blocking)弹出原语. 它是 LPOP 命令的阻塞版本,当给定列表内没有任何元素可供弹出的时候,连接将被 ...
- SQLServer 中发布与订阅
在对数据库做迁移的时候,会有很多方法,用存储过程,job,也可以用开源工具kettle,那么今天这些天变接触到了一种新的方法,就是SqlServer中自带的发布与订阅. 首先说明一下数据复制的流程.如 ...